static friction
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 189)

H-INDEX

48
(FIVE YEARS 5)

2022 ◽  
Vol 41 (2) ◽  
pp. 1-21
Author(s):  
Tao Du ◽  
Kui Wu ◽  
Pingchuan Ma ◽  
Sebastien Wah ◽  
Andrew Spielberg ◽  
...  

We present a novel, fast differentiable simulator for soft-body learning and control applications. Existing differentiable soft-body simulators can be classified into two categories based on their time integration methods: Simulators using explicit timestepping schemes require tiny timesteps to avoid numerical instabilities in gradient computation, and simulators using implicit time integration typically compute gradients by employing the adjoint method and solving the expensive linearized dynamics. Inspired by Projective Dynamics ( PD ), we present Differentiable Projective Dynamics ( DiffPD ), an efficient differentiable soft-body simulator based on PD with implicit time integration. The key idea in DiffPD is to speed up backpropagation by exploiting the prefactorized Cholesky decomposition in forward PD simulation. In terms of contact handling, DiffPD supports two types of contacts: a penalty-based model describing contact and friction forces and a complementarity-based model enforcing non-penetration conditions and static friction. We evaluate the performance of DiffPD and observe it is 4–19 times faster compared with the standard Newton’s method in various applications including system identification, inverse design problems, trajectory optimization, and closed-loop control. We also apply DiffPD in a reality-to-simulation ( real-to-sim ) example with contact and collisions and show its capability of reconstructing a digital twin of real-world scenes.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 448
Author(s):  
Wojciech S. Gora ◽  
Jesper V. Carstensen ◽  
Krystian L. Wlodarczyk ◽  
Mads B. Laursen ◽  
Erica B. Hansen ◽  
...  

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3–4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.


2022 ◽  
Vol 70 (1) ◽  
Author(s):  
Wilhelm Schmidt ◽  
Philipp Heck ◽  
Christoph Gaedigk ◽  
Peter Groche

Abstract Friction is one of the variables that have a far-reaching influence on forming processes. In the past, less attention was paid to static friction than to sliding friction in forming processes. In this paper, a test stand for the determination of static friction under load in metal forming is presented. The results are discussed using the example of an oscillating cold forming process. It could be shown that the expected influence of static friction is low in this application. Graphical abstract


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Gaokun Shi ◽  
Jingbin Li ◽  
Longpeng Ding ◽  
Zhiyuan Zhang ◽  
Huizhe Ding ◽  
...  

Discrete element method (DEM) simulation is an important method to analyze the interaction relationship between materials and equipment, and to develop machinery and/or equipment. However, it is necessary to input specific simulation parameters when establishing a DEM simulation model. In this study, the interval values were measured through angle of repose tests of fallen jujube fruit (FJF), and the simulation angle of repose tests for FJF were established with EDEM software (DEM Solutions Ltd. Edinburgh, Scotland, UK). Then, the Plackett-Burman design, steepest ascent search experiment, and center composite design experimental methods were utilized to obtain the specific values of the simulation parameters from the interval values. The results showed that significant influencing factors in the simulation angle of repose include the Poisson’s ratio, the static friction coefficient between FJF, and the static friction coefficient between FJF and the steel plate, for which the optimal values were 0.248, 0.480, and 0.309, respectively. The angle of repose tests’ results showed that the error was 0.53% between the simulation angle of repose (29.69°) and the angle of repose (29.85°). In addition, the flow rate test results showed that the average error was 5.84% between the physical and simulation tests. This indicated that the calibrated parameters were accurate and reliable, and that the simulation model can accurately represent the physical tests. Consequently, this study provides an EDEM model of FJF that was essential in designing machinery and equipment through the EDEM simulation method.


2021 ◽  
Author(s):  
Li Yi-Wei ◽  
Xu Peng-Fei ◽  
Yang Yong-Ge

Abstract The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova model under Gaussian colored noise is investigated by using the molecular dynamic simulation method. The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method. Via the stochastic Runge-Kutta algorithm, the relationship between different parameter values of the Gaussian colored noise (the noise intensity and the correlation time) and the nano-friction phenomena such as hysteresis, the maximum static friction force is separately studied here. Similar results are obtained from the two geometrically opposed ideal cases: incommensurate and commensurate interfaces. It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force, the introduction of noise can accelerate the motion of the system, making the atoms escape from the substrate potential well more easily. Interestingly, suitable correlation time and noise intensity give rise to super-lubricity. It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the Incommensurate interface.


Author(s):  
Owen Brazil ◽  
John B. Pethica ◽  
George M. Pharr

We report microscale friction experiments for diamond/metal and diamond/silica contacts under gigapascal contact pressures. Using a new nanoprobe technique that has a sufficient dynamic range of force and stiffness, we demonstrate the processes involved in the transition from purely interface sliding at the nanoscale to the situation where at least one of the sliding bodies undergoes some plastic deformation. For sliding of micrometre-sized tips on metallic substrates, additional local plastic yielding of the substrate resulting from tangential tractions causes the tip to sink into the surface, increasing the contact area in the direction of loading and resulting in a static friction coefficient higher than the kinetic during ploughing. This sink-in is largely absent in fused silica, and no friction drop is observed, along with lower friction in general. The transition from sink-in within the static friction regime to ploughing in the sliding friction regime is mediated by failure of the contact interface, indicated by a sharp increase in energy dissipation. At lower contact pressures, the elastic interfacial sliding behaviour characteristic of scanning probe or surface force apparatus experiments is recovered, bridging the gap between the exotic realm of nanotribology and plasticity-dominated macroscale friction.


2021 ◽  
Vol 332 ◽  
pp. 113149
Author(s):  
Tatsuki Sasamura ◽  
Abdullah Mustafa ◽  
Susumu Miyake ◽  
Takeshi Morita

2021 ◽  
Vol 2 (2) ◽  
pp. 403-412
Author(s):  
Dereje ALEMU

The physical attributes of agricultural product are utmost essential in developing technologies for different unit operations. Pertinent potato tuber attributes were studied. 100 samples of dominant and popular potato tuber varieties grown in Ethiopia which are free from any injuries from each variety were obtained from Holeta Agricultural Research Center. In this study, the physical attributes of potato tubers were determined at a moisture content of 70.75, 69.99, 71.75, 69.70 and 72.38% (wet basis) for Belete, Jalenie, Gera, Gudene and Chala varieties, respectively. Except specific gravity of potato tuber, other physical properties studied were significantly different at 5% of level of significance. Analysis of variance showed that there is also a significant difference in coefficient of static friction and angle of repose of all potato tuber varieties under four different materials and dynamic coefficient of friction under mild steel sheet metal and galvanized sheet.


Author(s):  
Peng Wang ◽  
Yu Xiao ◽  
Nan Wu

AbstractA new electrical power generation device based on high-frequency dynamic piezoelectric shear deformation under friction is developed. During the operation of a moving plate compressed and sliding on the top of a piezoelectric patch with constant velocity, dynamic shear deformation of the elastic piezoelectric patch is excited by periodic friction force and status (sliding and stick) variation. The dynamic piezoelectric shear strain can then generate continuous electrical power for energy absorbing and harvesting applications. The design of the piezoelectric couple device is first provided, and its mechanism, dynamic response and electric power generation under friction are described by a detailed iteration model. By comparing with previous experimental results, the accuracy of the proposed model is proven. Through numerical studies, the influences of the equivalent mass of the system, the velocity of the sliding object, the static friction coefficient and its lower limit, as well as the friction force delay rate on the power generation are obtained and discussed. The numerical results show that with the proposed design, up to 50-Watt maximum electrical power could be generated by a piezoelectric patch with a dimension of $$20\times 2\times 6$$ 20 × 2 × 6 cm under continuous friction with the moving plate at the velocity of 15 m/s. The possible bi-linear elastic stiffness variation of the system is also introduced, and the threshold of bi-linear elastic deformation, where the system stiffness changes, can be optimized for obtaining the highest power generation.


Sign in / Sign up

Export Citation Format

Share Document