An Integrated Approach to the Effective Completion of Horizontal Wells with Multistage Fracturing Based on Petrophysical Analysis, Geomechanical Modeling and Reservoir Simulation. Examples from Western Siberia. (Russian)

2016 ◽  
Author(s):  
E. Kovaleva ◽  
A. Vishnivetskiy ◽  
Yu. Naumov ◽  
N. Lavrenkova ◽  
S. Ahmedsafin ◽  
...  
2021 ◽  
pp. 108-119
Author(s):  
D. V. Shalyapin ◽  
D. L. Bakirov ◽  
M. M. Fattahov ◽  
A. D. Shalyapina ◽  
V. G. Kuznetsov

In domestic and world practice, despite the measures applied and developed to improve the quality of well casing, there is a problem of leaky structures in almost 50 % of completed wells. The study of actual data using classical methods of statistical analysis (regression and variance analyses) doesn't allow us to model the process with sufficient accuracy that requires the development of a new approach to the study of the attachment process. It is proposed to use the methods of machine learning and neural network modeling to identify the most important parameters and their synergistic impact on the target variables that affect the quality of well casing. The formulas necessary for translating the numerical values of the results of acoustic and gamma-gamma cementometry into categorical variables to improve the quality of probabilistic models are determined. A database consisting of 93 parameters for 934 wells of fields located in Western Siberia has been formed. The analysis of fastening of production columns of horizontal wells of four stratigraphic arches is carried out, the most weighty variables and regularities of their influence on target indicators are established. Recommendations are formulated to improve the quality of well casing by correcting the effects of acoustic and gamma-gamma logging on the results.


Author(s):  
S. Jain ◽  
R. Chanpura ◽  
R. Barbedo ◽  
M. Moura

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1623-1635 ◽  
Author(s):  
Ashish Kumar ◽  
Puneet Seth ◽  
Kaustubh Shrivastava ◽  
Ripudaman Manchanda ◽  
Mukul M. Sharma

Summary In ultralow-permeability reservoirs, communication between wells through connected fractures can be observed through tracer and pressure-interference tests. Understanding the connectivity between fractured horizontal wells in a multiwell pad is important for infill well drilling and parent-child well interactions. Interwell tracer and pressure-interference tests involve two or more fractured horizontal wells and provide information about hydraulic-fracture connectivity between the wells. In this work, we present an integrated approach based on the analysis of tracer and pressure interference data to obtain the degree of interference between fractured horizontal wells in a multiwell pad. We analyze well interference using tracer (chemical tracer and radioactive proppant tracer) and pressure data in an 11-well pad in the Permian Basin. Changes in pressure and tracer concentration in the monitor wells were used to identify and evaluate interference between the source and monitor wells. Extremely low tracer recovery and weak pressure response signify the absence of connected fractures and suggest that interference through matrix alone is insignificant. Combined tracer and pressure-interference data suggest connected fracture pathways between the communicating wells. The degree of interference can be estimated in terms of pressure response times and tracer recovery. An effective reservoir model was used to simulate pressure interference between wells during production. Simulation results indicate that well interference observed during production is primarily because of hydraulically connected fractures. Combined tracer and pressure-interference analysis provides a unique tool for understanding the time-dependent connectivity between communicating wells, which can be useful for optimizing infill well drilling, well spacing, and fracture sizing in future treatment designs.


Sign in / Sign up

Export Citation Format

Share Document