fractured horizontal wells
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 97)

H-INDEX

24
(FIVE YEARS 4)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 613
Author(s):  
Li Wu ◽  
Jiqun Zhang ◽  
Deli Jia ◽  
Shuoliang Wang ◽  
Yiqun Yan

Block M of the Ordos Basin is a typical low-permeability tight sandstone gas accumulation. To develop these reservoirs, various horizontal well fracturing technologies, such as hydra-jet fracturing, open-hole packer multistage fracturing, and perf-and-plug multistage fracturing, have been implemented in practice, showing greatly varying performance. In this paper, six fracturing technologies adopted in Block M are reviewed in terms of principle, applicability, advantages, and disadvantages, and their field application effects are compared from the technical and economic perspectives. Furthermore, the main factors affecting the productivity of fractured horizontal wells are determined using the entropy method, the causes for the difference in application effects of the fracturing technologies are analyzed, and a comprehensive productivity impact index (CPII) in good correlation with the single-well production of fractured horizontal wells is constructed. This article provides a simple and applicable method for predicting the performance of multi-frac horizontal wells that takes multiple factors into account. The results can be used to select completion methods and optimize fracturing parameters in similar reservoirs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Zhipeng ◽  
Wang Jinwei ◽  
Liu Rumin ◽  
Wang Tao ◽  
Han Guannan

For economic and efficient development of extremely high-condensate shale gas reservoirs, a numerical model of segmental multicluster fractured horizontal well was established considering the effect of condensate and desorption, and the optimization of fracturing segments, fracturing clusters, half-length of main fracture, fracture permeability, fracture mesh density, and fracture distribution patterns were studied. It is indicated that the horizontal well whose design length is 2,700 m performs best when it has 43 fracturing segments with three clusters in each segment and the fracture permeability is 300 mD. The production capacity of horizontal wells is positively linearly correlated with the half-length of fractures. Increasing fracture half-length would be an effective way to produce condensate oil near wellbore. An effective fractured area can be constructed to remarkably improve productivity when the half-length of the fracture is 50 m and the number of secondary fractures is four in each segment. On the basis of reasonable fracture parameters, the staggered type distribution pattern is beneficial to the efficient development of shale gas-condensate reservoirs because of its large reconstruction volume, far pressure wave, small fracture interference, and small precipitation range of condensate.


2021 ◽  
Author(s):  
Carlos Blanc ◽  
Nestor Santi ◽  
Leandro Abel Perello ◽  
Adonis Ichim ◽  
Alexandru Adrian Zestran ◽  
...  

Abstract With the increase in shale oil and gas activity and complexity, companies deploy new solutions to safely and efficiently drill, complete, and produce wells in unconventional plays. These include Oil Country Tubular Goods (OCTG) connections, which must withstand installation, stimulation, and production loads specific to this application. Industry available standards provide manufacturers and operators a framework for quality founded on best practices and testing. In some instances, existing testing protocols may not be adequate (e.g. insufficient or overconservative) to assess connections’ performance for this application. For this reason, the American Petroleum Institute established an expert working group to develop Technical Report 5SF (TR 5SF) intended to evaluate casing connections performance in multi-fractured horizontal wells. The objective of this paper is to present a set of verified testing protocols applicable to casing connections used in the most common shale plays, complementing the existing body of knowledge. We discuss testing elements and parameters tailored to the conditions of various shale plays. Based on the operations planned for the life of a well, the testing procedure is adjusted to resemble the expected conditions and loads in the correct order. This includes make-up, high-cycle fatigue associated with the casing string installation, thread compound degradation under temperature and time, and mechanical load cycles generated by stimulation. Specimen sealability is confirmed under production loads, after which failure testing is performed. Some of the inputs to build the testing protocol are: maximum internal pressure, axial load, dogleg severity, number of cycles, temperature, and fluid type. Since connections play a crucial role in the integrity of a well, a testing procedure to ensure their performance is shown. Testing protocols for Multi-fractured Horizontal Wells (MFHW) applied to two connection types are presented, highlighting how tailored testing protocols and robust engineering improve product reliability and well integrity assurance. We compile a set of testing inputs for the most relevant shale plays worldwide, together with the testing elements, sequence, and acceptance criteria. This should help end users validate and benchmark products’ performance while improving industry knowledge of connections capabilities.


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6354
Author(s):  
Xulin Du ◽  
Linsong Cheng ◽  
Jun Chen ◽  
Jianchao Cai ◽  
Langyu Niu ◽  
...  

The mismatching between the multi-scale feature of complex fracture networks (CFNs) in unconventional reservoirs and their current numerical approaches is a conspicuous problem to be solved. In this paper, the CFNs are divided into hydraulic macro-fractures, induced fractures, and natural micro-fractures according to their mode of origin. A hybrid model coupling various numerical approaches is proposed to match the three-dimensional multi-scale fracture networks. The macro-fractures with high-conductivity and wide-aperture are explicitly characterized by a mimetic Green element method-based hierarchical fracture model. The induced fractures and natural micro-fractures that have features of low-conductivity and small-openings are upscaled to the dual-medium grid and enhanced matrix grid through the equivalent continuum-medium method, respectively. Subsequently, some benchmark cases are implemented to confirm the high-precision and high-robustness of the proposed hybrid model that indeed accomplishes accurate modeling of fluid flow in multi-scale CFNs by comparing with commercial software tNavigator®. Furthermore, an integrated workflow of simulation modeling for multiscale CFNs combined with a field example in Sichuan from China is used to analyzing the production information of fractured horizontal wells in shale gas reservoirs. Compared with the field production data from this typical well, it can be proved that the hybrid model has strong reliability and practicability.


2021 ◽  
Author(s):  
Liang Tao ◽  
Jianchun Guo ◽  
Zhijun Li ◽  
Xuanyi Wang ◽  
Shubo Yang ◽  
...  

Abstract Single well productivity is an important index to evaluate the effect of volume fracturing. However, there are many factors affecting the productivity of Multi-fractured horizontal wells (MFHWs) in unconventional reservoirs and the relationship is complex, which makes productivity prediction very difficult. In this paper, taking the tight oil reservoir in Songliao Basin as the research object, a new mixed model of initial cumulative oil production of MFHWs was established, which can consider the geological factors and volume fracturing factors at the same time. Firstly, based on the big data, the multi-level evaluation system was established by using the analytic hierarchy process (AHP). Then, the weight factor was calculated to uncover key factors that dominate productivity of MFHWs. Finally, the fuzzy logic method was used to calculate the Euclidean distance and quantitatively predict the production of any horizontal wells. The simulation results shown that: the order of the main factors affecting production in the study area was horizontal section sandstone length, number of stages, formation pressure, proppant amount, net pay thickness, permeability, porosity, oil saturation, fracturing fluid volume. The hybrid model has been applied to the productivity prediction of 185 MFHWs in tight oil reservoirs in China, the prediction error was less than 5%. The new model can be used to predict production for MFHWs quickly and economically.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5857
Author(s):  
Siyu Liu ◽  
Shengchun Xiong ◽  
Dingwei Weng ◽  
Peng Song ◽  
Rou Chen ◽  
...  

At present, the existing deliverability evaluation models mainly consider the impact of specific factors on production, and the description of the complex fracture network structure primarily remains at the stage of an ideal dual-pore medium with uniform distribution. However, this cannot reflect the actual fracture network structure and fluid flow law of fractured horizontal wells. Thus, in this paper, a non-uniform fracture network structure is proposed considering the influence of the threshold pressure gradient and stress sensitivity characteristics on the production performance of horizontal wells. The stress sensitivity and the fractal theory are combined to characterize the permeability of the complex fracture network, and a three-zone compound unsteady deliverability model for staged fractured horizontal wells in tight oil reservoirs is successfully developed. Laplace transformation, perturbation theory, and numerical inversion are applied to obtain the semi-analytical solution of the proposed deliverability model. The reliability and accuracy of the analytical solution are verified by the classical tri-linear flow model and an oil field example. The effects of related influential parameters on the production of horizontal wells are analyzed. The deliverability evaluation method proposed in this paper can provide a theoretical basis for formulating rational development technology policies for tight oil reservoirs.


2021 ◽  
Author(s):  
Jiali Zhang ◽  
Xinwei Liao ◽  
Nai Cao

Abstract This paper develops a mathematical model for rate transient analysis in multi-stage fractured horizontal wells with considering weak fluid supply. A new concept of additional skin factor is introduced in the proposed model to characterize the fluid supply. Then, the mathematical model are solved by using the perturbation transformation, point source integration method, Laplace transform, and numerical inversion, while the fracture flow equations are solved by fracture discretization and superposition principle. First, the flow regimes of multi-stage fractured horizontal wells with considering weak fluid supply are identified based on the rate transient behaviors, including wellbore storage and skin effect, bilinear flow, linear flow, pseudo-radial flow in the fractured zone, interface skin effect, pseudo-radial flow in the original zone, and boundary-dominated flow. The effect of additional interface skin makes the double logarithmic curve of production rate appear an abrupt "overlap". The results of the sensitivity study show that the abrupt "overlap" becomes more obvious with the increase of the fracture conductivity, fracture number, the stress sensitivity coefficient, especially the interface skin. Finally, the proposed mathematical model is used to perform a case study on the production data of actual tight-gas wells from the Ordos Basin. The interface skin factor, fracture half-length, fracture conductivity, and boundary radius are evaluated. Through the proposed model, the characteristics of weak fluid supply in tight gas reservoirs are fully understood.


Sign in / Sign up

Export Citation Format

Share Document