Application of Inflow Control Device to Control Water Production in Carbonate Reservoir with Active Bottom Water Drive in a West Kuwait Field - Case Study from Kuwait.

2019 ◽  
Author(s):  
Mohamed Farouk Hassan ◽  
Naser Al-Khalifa ◽  
Wejdan Abdul-Aziz ◽  
Asheshwar Tiwary ◽  
Brajesh Tiwari ◽  
...  
2013 ◽  
Author(s):  
Hani Ahmed Bajunaid ◽  
Taha Mousrafa Moawad ◽  
Abdullah M Al-dhafeeri ◽  
Mahmoud Mohamed Abd Elfattah ◽  
Tawakol I. Mohammed

2008 ◽  
Author(s):  
Emmanuel Gaucher ◽  
Christophe C. Maisons ◽  
Abdullatif Y. Al-Kandari ◽  
Kamal Al-Atroshi and Jassim M. Al-Kanderi

2021 ◽  
Author(s):  
Yong Yang ◽  
Xiaodong Li ◽  
Changwei Sun ◽  
Yuanzhi Liu ◽  
Renkai Jiang ◽  
...  

Abstract The problem of water production in carbonate reservoir is always a worldwide problem; meanwhile, in heavy oil reservoir with bottom water, rapid water breakthrough or high water cut is the development feature of this kind of reservoir; the problem of high water production in infill wells in old reservoir area is very common. Each of these three kinds of problems is difficult to be tackled for oilfield developers. When these three kinds of problems occur in a well, the difficulty of water shutoff can be imagined. Excessive water production will not only reduce the oil rate of wells, but also increase the cost of water treatment, and even lead to well shut in. Therefore, how to solve the problem of produced water from infill wells in old area of heavy oil reservoir with bottom water in carbonate rock will be the focus of this paper. This paper elaborates the application of continuous pack-off particles with ICD screen (CPI) technology in infill wells newly put into production in brown field of Liuhua, South China Sea. Liuhua oilfield is a biohermal limestone heavy oil reservoir with strong bottom water. At present, the recovery is only 11%, and the comprehensive water cut is as high as 96%. Excessive water production greatly reduces the hydrocarbon production of the oil well, which makes the production of the oilfield decrease rapidly. In order to delay the decline of oil production, Liuhua oilfield has adopted the mainstream water shutoff technology, including chemical and mechanical water shutoff methods. The application results show that the adaptability of mainstream water shutoff technology in Liuhua oilfield needs to be improved. Although CPI has achieved good water shutoff effect in the development and old wells in block 3 of Liuhua oilfield, there is no application case in the old area of Liuhua oilfield which has been developed for decades, so the application effect is still unclear. At present, the average water cut of new infill wells in the old area reaches 80% when commissioned and rises rapidly to more than 90% one month later. Considering that there is more remaining oil distribution in the old area of Liuhua oilfield and the obvious effect of CPI in block 3, it is decided to apply CPI in infill well X of old area for well completion. CPI is based on the ICD screen radial high-speed fluid containment and pack-off particles in the wellbore annulus to prevent fluid channeling axially, thus achieving well bore water shutoff and oil enhancement. As for the application in fractured reef limestone reservoir, the CPI not only has the function of wellbore water shutoff, but also fills the continuous pack-off particles into the natural fractures in the formation, so as to achieve dual water shutoff in wellbore and fractures, and further enhance the effect of water shutoff and oil enhancement. The target well X is located in the old area of Liuhua oilfield, which is a new infill well in the old area. This target well with three kinds of water problems has great risk of rapid water breakthrough. Since 2010, 7 infill wells have been put into operation in this area, and the water cut after commissioning is 68.5%~92.6%. The average water cut is 85.11% and the average oil rate is 930.92 BPD. After CPI completion in well X, the water cut is only 26% (1/3 of offset wells) and the oil rate is 1300BPD (39.6% higher than that of offset wells). The target well has achieved remarkable effect of reducing water and increasing oil. In addition, in the actual construction process, a total of 47.4m3 particles were pumped into the well, which is equivalent to 2.3 times of the theoretical volume of the annulus between the screen and the borehole wall. Among them, 20m3 continuous pack-off particles entered the annulus, and 27.4m3 continuous pack-off particles entered the natural fractures in the formation. Through the analysis of CPI completed wells in Liuhua oilfield, it is found out that the overfilling quantity is positively correlated to the effect of water shutoff and oil enhancement.


2017 ◽  
Author(s):  
A. Pakdeesirote ◽  
S. Ackagosol ◽  
K. Lewis ◽  
N. Kitvarayut ◽  
J. Pritchett ◽  
...  

2016 ◽  
Author(s):  
Shiv Narayan Jalan ◽  
Rohit Kumar Kotecha ◽  
Naz H. Gazi ◽  
Salem Al-Sabea ◽  
Abdullah Bu-Qurais ◽  
...  

2015 ◽  
Author(s):  
F. Iqbal ◽  
R. Iskandar ◽  
E. Radwan ◽  
H. Abdel-Moneam Abbas ◽  
H. Douik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document