Advanced Resistivity Modeling to Enhance Vertical and Horizontal Well Formation Evaluation

2020 ◽  
Author(s):  
Said Mahiout ◽  
Chengbing Liu ◽  
Ralf Polinski ◽  
Moshood Kassim
2021 ◽  
Author(s):  
Salaheldeen S Almasmoom ◽  
Gagok I Santoso ◽  
Naif M Rubaie ◽  
Javier O Lagraba ◽  
David B Stonestreet ◽  
...  

Abstract This paper presents a success story of deploying new technology to improve geosteering operations in an unconventional horizontal well. A new-generation logging-while-drilling (LWD) imaging tool, that provides high resolution resistivity and ultrasonic images in an oil-based mud environment, was tested while drilling a long lateral section of an unconventional horizontal well. In addition to improving the geosteering operations, this tool has proven the ability to eliminate the wireline image log requirements (resistivity and ultrasonic), hence reducing rig time significantly. The LWD bottomhole-assembly (BHA) included the following components: gamma ray (GR), density, neutron, resistivity, sonic, density imager, and the newly deployed dual imager (resistivity and ultrasonic). The dual imager component adds an additional 15-ft sub to the drilling BHA, which includes four ultrasonic sensors orthogonal to each other, and two electromagnetic sensors diametrically opposite to each other (reference figure 1). This new technology was deployed in an unconventional horizontal well to help geosteer the well in the intended zone, which led to an improvement in well placement, enhanced the evaluation of the lateral facies distribution, and allowed better identification of natural fractures. The dual images provided the necessary information for interpreting geological features, drilling induced features, and other sedimentological features, thus enhancing the multistage hydraulic fracturing stimulation design. In addition, an ultrasonic caliper was acquired while drilling the curve and lateral section, providing a full-coverage image of the borehole walls and cross-sectional borehole size. The unique BHA was designed to fulfill all the directional drilling, formation evaluation and geosteering requirements. A dynamic simulation was done to confirm the required number of stabilizers, and their respective locations within the BHA, to reduce shock and vibration, borehole tortuosity and drilling related issues, thereby improving over-all performance. Real-time drilling monitoring included torque and drag trending, back-reaming practices and buckling avoidance calculations, which were implemented to support geosteering, and for providing a smooth wellbore for subsequent wireline and completion operations run in this well. A new generation dual-image oil-based mud environment LWD tool was successfully deployed to show the multifaceted benefits of enhanced geo-steering/well placement, formation evaluation, and hydraulic fracturing design in an unconventional horizontal well. Complexities in the multifunctioning nature of the BHA were strategically optimized to support all requirements without introducing any significant risk in operation.


2021 ◽  
Author(s):  
Pedro Romero Rojas ◽  
Larisa Tagarieva ◽  
Said Mohamed ◽  
Mohand Arezki Belloul ◽  
Chao Chen ◽  
...  

Abstract The Middle Burgan formation in North Kuwait is very challenging: its limited vertical thickness and overall low resistivity require complex and special operations for drilling, formation evaluation and completion to ensure optimum production. The objective of this case study is to demonstrate the value of Nuclear Magnetic Resonance (NMR) log data to provide rock quality and fluid typing in this challenging environment, where conventional logs are not enough for reservoir understanding along a horizontal well. A horizontal 6 1/8" section was drilled through the Middle Burgan formation with oil-based mud and Gamma Ray, Resistivity, Density data were acquired while drilling, and data from the latest generation of multifrequency, focused NMR wireline tool (FMR), conveyed on pipe (PCL). Water saturation computation in low resistivity pay often exceeds the real value when computed using conventional logs. In this environment, NMR logging proved to be essential for the proper reservoir characterization and to support critical decisions on well completion design. Fundamental rock quality and permeability profiles were supplied by NMR. Oil saturation was identified by applying the 2D-NMR methods, Diffusion vs. T2, or DT2 maps. Despite the presence of washouts, high quality NMR data was obtained at different depths of investigation in the horizontal well section. Integrating the NMR data with conventional well logs helped advanced reservoir characterization, in reducing the uncertainty in formation evaluation by clearly identifying pay and shale zones, and furthermore, in providing necessary information to support management decisions regarding fracking design to maximize oil production. The formation evaluation and well objectives were met with the aid of the high-quality NMR log data. The multifrequency capability of the tool allows data acquisition at different depths of investigation which helped to overcome the negative effects of washouts in the data interpretation. A remarkable well performance and high productivity from the low resistivity, thin reservoir layers, is expected based on decisions made from the by very reliable well log data interpretation.


1991 ◽  
Author(s):  
W.K. Najia ◽  
K.H. Habib ◽  
J. Asada

2014 ◽  
Author(s):  
Gagok Imam Santoso ◽  
Dian Permanasari ◽  
Khairul Anuar Alang ◽  
Hengky Ng ◽  
Nora Yusuf ◽  
...  

2006 ◽  
Author(s):  
A.A. Al-Hajari ◽  
S.M. Ma ◽  
R. Geier ◽  
P. Butt ◽  
A.P. Hibler ◽  
...  

2010 ◽  
Author(s):  
A.A. Al-Hajari ◽  
S.M. Ma ◽  
R. Geier ◽  
P. Butt ◽  
A.P. Hibler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document