low resistivity
Recently Published Documents


TOTAL DOCUMENTS

1193
(FIVE YEARS 215)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
Arijit Bose ◽  
Debaleen Biswas ◽  
Shigeomi Hishiki ◽  
Sumito Ouchi ◽  
Koichi Kitahara ◽  
...  

2021 ◽  
Author(s):  
Wei Zhang ◽  
Zhiwei Ma ◽  
Haowei Zhang ◽  
Wen Jin CHEN ◽  
Xin Wang

Abstract In the present paper, we systematically investigate the nonlinear evolution of the resistive kink mode in the low resistivity plasma in Tokamak geometry. We find that the aspect ratio of the initial equilibrium can significantly influence the critical resistivity for plasmoid formation. With the aspect ratio of 3/1, the critical resistivity can be one magnitude larger than that in cylindrical geometry due to the strong mode-mode coupling. We also find that the critical resistivity for plasmoid formation decreases with increasing plasma viscosity in the moderately low resistivity regime. Due to the geometry of Tokamaks, the critical resistivity for plasmoid formation increases with the increasing radial location of the resonant surface.


2021 ◽  
Author(s):  
Yessica Fransisca ◽  
Karinka Adiandra ◽  
Vinda Manurung ◽  
Laila Warkhaida ◽  
M. Aidil Arham ◽  
...  

Abstract This paper describes the combination of strategies deployed to optimize horizontal well placement in a 40 ft thick isotropic sand with very low resistivity contrast compared to an underlying anisotropic shale in Semoga field. These strategies were developed due to previously unsuccessful attempts to drill a horizontal well with multiple side-tracks that was finally drilled and completed as a high-inclined well. To maximize reservoir contact of the subject horizontal well, a new methodology on well placement was developed by applying lessons learned, taking into account the additional challenges within this well. The first approach was to conduct a thorough analysis on the previous inclined well to evaluate each formation layer’s anisotropy ratio to be used in an effective geosteering model that could better simulate the real time environment. Correct selections of geosteering tools based on comprehensive pre-well modelling was considered to ensure on-target landing section to facilitate an effective lateral section. A comprehensive geosteering pre-well model was constructed to guide real-time operations. In the subject horizontal well, landing strategy was analysed in four stages of anisotropy ratio. The lateral section strategy focused on how to cater for the expected fault and maintain the trajectory to maximize reservoir exposure. Execution of the geosteering operations resulted in 100% reservoir contact. By monitoring the behaviour of shale anisotropy ratio from resistivity measurements and gamma ray at-bit data while drilling, the subject well was precisely landed at 11.5 ft TVD below the top of target sand. In the lateral section, wellbore trajectory intersected two faults exhibiting greater associated throw compared to the seismic estimate. Resistivity geo-signal and azimuthal resistivity responses were used to maintain the wellbore attitude inside the target reservoir. In this case history well with a low resistivity contrast environment, this methodology successfully enabled efficient operations to land the well precisely at the target with minimum borehole tortuosity. This was achieved by reducing geological uncertainty due to anomalous resistivity data responding to shale electrical anisotropy. Recognition of these electromagnetic resistivity values also played an important role in identifying the overlain anisotropic shale layer, hence avoiding reservoir exit. This workflow also helped in benchmarking future horizontal well placement operations in Semoga Field. Technical Categories: Geosteering and Well Placement, Reservoir Engineering, Low resistivity Low Contrast Reservoir Evaluation, Real-Time Operations, Case Studies


2021 ◽  
Author(s):  
Wael Fares ◽  
Islam Moustafa ◽  
Ali Al Felasi ◽  
Hocine Khemissa ◽  
Omar Al Mutwali ◽  
...  

Abstract The high reservoir uncertainty, due to the lateral distribution of fluids, results in variable water saturation, which is very challenging in drilling horizontal wells. In order to reduce uncertainty, the plan was to drill a pilot hole to evaluate the target zones and plan horizontal sections based on the information gained. To investigate the possibility of avoiding pilot holes in the future, an advanced ultra-deep resistivity mapping sensor was deployed to map the mature reservoirs, to identify formation and fluid boundaries early before penetrating them, avoiding the need for pilot holes. Prewell inversion modeling was conducted to optimize the spacing and firing frequency selection and to facilitate an early real-time geostopping decision. The plan was to run the ultra-deep resistivity mapping sensor in conjunction with shallow propagation resistivity, density, and neutron porosity tools while drilling the 8 ½-in. landing section. The real-time ultra-deep resistivity mapping inversion was run using a depth of inversion up to 120 ft., to be able to detect the reservoir early and evaluate the predicted reservoir resistivity. This would allow optimization of any geostopping decision. The ultra-deep resistivity mapping sensor delivered accurate mapping of low resistivity zones up to 85 ft. TVD away from the wellbore in a challenging low resistivity environment. The real-time ultra-deep resistivity mapping inversion enabled the prediction of resistivity values in target zones prior to entering the reservoir; values which were later crosschecked against open-hole logs for validation. The results enabled identification of the optimal geostopping point in the 8 ½-in. section, enabling up to seven rig days to be saved in the future by eliminating a pilot hole. In addition this would eliminate the risk of setting a whipstock at high inclination with the subsequent impact on milling operations. In specific cases, this minimizes drilling risks in unknown/high reservoir pressure zones by improving early detection of formation tops. Plans were modified for a nearby future well and the pilot-hole phase was eliminated because of the confidence provided by these results. Deployment of the ultra-deep resistivity mapping sensor in these mature carbonate reservoirs may reduce the uncertainty associated with fluid migration. In addition, use of the tool can facilitate precise geosteering to maintain distance from fluid boundaries in thick reservoirs. Furthermore, due to the depths of investigation possible with these tools, it will help enable the mapping of nearby reservoirs for future development. Further multi-disciplinary studies remain desirable using existing standard log data to validate the effectiveness of this concept for different fields and reservoirs.


2021 ◽  
Author(s):  
◽  
Ronald Verave

<p>Saltwater intrusion studies in coastal Papua New Guinea (PNG) are a rarity despite recognized vulnerabilities to salination of coastal groundwater resources. For many seaside communities such as Maopa the threat of salination is exacerbated by high extraction rates by a growing population and the likelihood of the effects of climate change. Saltwater intrusion can be addressed using various methods, including direct water sampling from wells and electrical resistivity measurements. This study advances knowledge of a previous assessment of saltwater intrusion and groundwater in this region that used DC Schlumberger resistivity soundings, through an extensive and cost-effective Transient ElectroMagnetic (TEM) survey. The study aims to map the lateral and vertical extent of salination and the characterization of groundwater in the landward direction over seven lines of TEM soundings along Keakalo Bay. The TEM method proved successful in identifying four main geoelectric layers. The top layer has a highly variable resistivity (range of 5 to 355 Ωm) inferred as the vadose zone. Beneath this layer is a layer of intermediate resistivity (100 Ωm > p ≥ 20 Ωm) characterizing a perched freshwater aquifer with a thickness range of 3.2 to 15 m. An intermediate layer of low resistivity (20 Ωm > p ≥ 3 Ωm) was detected at the boundary separating the freshwater aquifer from the inferred saltwater intrusion. This layer is typically thicker than the freshwater aquifer and is referred to as the mixing zone. The deepest layer constituting the salination zone has a very low resistivity (3 Ωm > p ≥ 0.4 Ωm), occurring at depths of up to 42 m. The depth to the salination zone varied from deep in the middle of the survey area to shallow in the fringes of the survey. This pattern is reflective of surface seawater infiltration marked by mangrove forest in the interior and subsurface infiltration from the coast. Similar depth trends but at shallower depths were also observed for the mixing zone, and the freshwater region. In some cases the mixing area overwhelms the freshwater regions. Layering confirmed groundwater resource and salination patterns as those of basic models reflective of small island hydrology, except that salination and the freshwater boundary were less distinctive due to the relatively high thickness of the dispersion zone. The use of different sounding parameters in line 7 provided useful information about the nature of the deep basement unit and thickness of the overlying unconsolidated quaternary sediment.</p>


2021 ◽  
Author(s):  
◽  
Ronald Verave

<p>Saltwater intrusion studies in coastal Papua New Guinea (PNG) are a rarity despite recognized vulnerabilities to salination of coastal groundwater resources. For many seaside communities such as Maopa the threat of salination is exacerbated by high extraction rates by a growing population and the likelihood of the effects of climate change. Saltwater intrusion can be addressed using various methods, including direct water sampling from wells and electrical resistivity measurements. This study advances knowledge of a previous assessment of saltwater intrusion and groundwater in this region that used DC Schlumberger resistivity soundings, through an extensive and cost-effective Transient ElectroMagnetic (TEM) survey. The study aims to map the lateral and vertical extent of salination and the characterization of groundwater in the landward direction over seven lines of TEM soundings along Keakalo Bay. The TEM method proved successful in identifying four main geoelectric layers. The top layer has a highly variable resistivity (range of 5 to 355 Ωm) inferred as the vadose zone. Beneath this layer is a layer of intermediate resistivity (100 Ωm > p ≥ 20 Ωm) characterizing a perched freshwater aquifer with a thickness range of 3.2 to 15 m. An intermediate layer of low resistivity (20 Ωm > p ≥ 3 Ωm) was detected at the boundary separating the freshwater aquifer from the inferred saltwater intrusion. This layer is typically thicker than the freshwater aquifer and is referred to as the mixing zone. The deepest layer constituting the salination zone has a very low resistivity (3 Ωm > p ≥ 0.4 Ωm), occurring at depths of up to 42 m. The depth to the salination zone varied from deep in the middle of the survey area to shallow in the fringes of the survey. This pattern is reflective of surface seawater infiltration marked by mangrove forest in the interior and subsurface infiltration from the coast. Similar depth trends but at shallower depths were also observed for the mixing zone, and the freshwater region. In some cases the mixing area overwhelms the freshwater regions. Layering confirmed groundwater resource and salination patterns as those of basic models reflective of small island hydrology, except that salination and the freshwater boundary were less distinctive due to the relatively high thickness of the dispersion zone. The use of different sounding parameters in line 7 provided useful information about the nature of the deep basement unit and thickness of the overlying unconsolidated quaternary sediment.</p>


2021 ◽  
Vol 54 (2E) ◽  
pp. 104-121
Author(s):  
Emad Al-Khersan

A total of 45 ground penetrating radar profiles have been conducted in Basrah City, Southern Iraq, to detect buried utilities in such soils which have not been tested before. This study tries to explore how much this technique can be useful for Basrah low resistivity soils during arid and humid seasons. In Basrah University Campus (silty clay soil) and Basrah Sport City (silty sand soil), 37 and 8 ground penetrating radar profiles were achieved inside these locations respectively. Vertical electrical sounding (Schlumberger array) and electrical profiling (Wenner array) were also used in compatibility with radar surveys side by side in all sites. Here, radargrams do not reveal much more details about the subsurface conditions because of the moisture content and soil characterizations. The actual penetrating depth of 250 and 500 MHz antennas are limited to 1.4 and 0.4 m respectively due to the soil total dissolved solids of about 6790 ppm. The tests suggest that the 250 MHz antenna is somewhat better than the 500 MHz one for detecting the shapes and depths of the buried bodies in silty clay soils during rainy or even arid periods. In Basrah Sport City (500 MHz) antenna, the radargram wave signals are not good for more than 2.5 m depth, and this antenna, rather than the 250 MHZ one is suitable for silty sand soil type.


Sign in / Sign up

Export Citation Format

Share Document