Compositional Simulation of Well Performance for Fractured and Multiple Fractured Horizontal Wells in Stratified Gas Condensate Reservoirs

1997 ◽  
Author(s):  
Erwin Kroemer ◽  
Ibrahim S. Abou-Sayed ◽  
D. Krishna Babu ◽  
Martin F. Cohen
2020 ◽  
Vol 185 ◽  
pp. 106566
Author(s):  
Sadegh Dahim ◽  
Amin Taghavinejad ◽  
Milad Razghandi ◽  
Hamed Rahimi Rigi ◽  
Kianoosh Moeini ◽  
...  

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bander N. Al Ghamdi ◽  
Luis F. Ayala H.

Gas-condensate productivity is highly dependent on the thermodynamic behavior of the fluids-in-place. The condensation attendant with the depletion of gas-condensate reservoirs leads to a deficiency in the flow of fluids moving toward the production channels. The impairment is a result of condensate accumulation near the production channels in an immobility state until reaching a critical saturation point. Considering the flow phenomenon of gas-condensate reservoirs, tight formations can be inevitably complex hosting environments in which to achieve economical production. This work is aimed to assess the productivity gas-condensate reservoirs in a naturally fractured setting against the effect of capillary pressure and relative permeability constraints. The severity of condensate coating and magnitude of impairment was evaluated in a system with a permeability of 0.001 mD using an in-house compositional simulator. Several composition combinations were considered to portray mixtures ascending in complexity from light to heavy. The examination showed that thicker walls of condensate and greater impairment are attained with mixture containing higher nonvolatile concentrations. In addition, the influence of different capillary curves was insignificant to the overall behavior of fluids-in-place and movement within the pores medium. A greater impact on the transport of fluids was owed to relative permeability curves, which showed dependency on the extent of condensate content. Activating diffusion was found to diminish flow constraints due to the capturing of additional extractions that were not accounted for under Darcy's law alone.


2011 ◽  
Vol 14 (02) ◽  
pp. 248-259 ◽  
Author(s):  
E.. Ozkan ◽  
M Brown ◽  
R.. Raghavan ◽  
H.. Kazemi

Summary This paper presents a discussion of fractured-horizontal-well performance in millidarcy permeability (conventional) and micro- to nanodarcy permeability (unconventional) reservoirs. It provides interpretations of the reasons to fracture horizontal wells in both types of formations. The objective of the paper is to highlight the special productivity features of unconventional shale reservoirs. By using a trilinear-flow model, it is shown that the drainage volume of a multiple-fractured horizontal well in a shale reservoir is limited to the inner reservoir between the fractures. Unlike conventional reservoirs, high reservoir permeability and high hydraulic-fracture conductivity may not warrant favorable productivity in shale reservoirs. An efficient way to improve the productivity of ultratight shale formations is to increase the density of natural fractures. High natural-fracture conductivities may not necessarily contribute to productivity either. Decreasing hydraulic-fracture spacing increases the productivity of the well, but the incremental production gain for each additional hydraulic fracture decreases. The trilinear-flow model presented in this work and the information derived from it should help the design and performance prediction of multiple-fractured horizontal wells in shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document