Performance Analysis of Compositional and Modified Black-Oil Models for a Rich Gas Condensate Reservoir

Author(s):  
Bulent Izgec ◽  
Maria A. Barrufet
1987 ◽  
Vol 27 (1) ◽  
pp. 370
Author(s):  
W.H. Goldthorpe ◽  
J.K. Drohm

Special attention must be paid to the generation of PVT parameters when applying conventional black oil reservoir simulators to the modelling of volatile oil and gas-condensate reservoirs. In such reservoirs phase behaviour is an important phenomenon and common approaches to approximating this, via the black oil PVT representation, introduce errors that may result in prediction of incorrect recoveries of surface gas and condensate. Further, determination of production tubing pressure drops for use in such simulators is also prone to errors. These affect the estimation of well potentials and reservoir abandonment pressures.Calculation of black oil PVT parameters by the method of Coats (1985) is shown to be preferred over conventional approaches, although the PVT parameters themselves lose direct physical meaning. It is essential that a properly tuned equation of state be available for use in conjunction with experimental data.Production forecasting based on simulation output requires further processing in order to translate the black oil surface phase fluxes into products such as sales gas, LPG and condensate. For gas-condensate reservoirs, such post-processing of results from the simulation of depletion or cycling above the dew point is valid. In principle it is invalid for cycling below the dew point but in practice it can still provide useful information.


1983 ◽  
Vol 23 (05) ◽  
pp. 727-742 ◽  
Author(s):  
Larry C. Young ◽  
Robert E. Stephenson

A procedure for solving compositional model equations is described. The procedure is based on the Newton Raphson iteration method. The equations and unknowns in the algorithm are ordered in such a way that different fluid property correlations can be accommodated leadily. Three different correlations have been implemented with the method. These include simplified correlations as well as a Redlich-Kwong equation of state (EOS). The example problems considered area conventional waterflood problem,displacement of oil by CO, andthe displacement of a gas condensate by nitrogen. These examples illustrate the utility of the different fluid-property correlations. The computing times reported are at least as low as for other methods that are specialized for a narrower class of problems. Introduction Black-oil models are used to study conventional recovery techniques in reservoirs for which fluid properties can be expressed as a function of pressure and bubble-point pressure. Compositional models are used when either the pressure. Compositional models are used when either the in-place or injected fluid causes fluid properties to be dependent on composition also. Examples of problems generally requiring compositional models are primary production or injection processes (such as primary production or injection processes (such as nitrogen injection) into gas condensate and volatile oil reservoirs and (2) enhanced recovery from oil reservoirs by CO or enriched gas injection. With deeper drilling, the frequency of gas condensate and volatile oil reservoir discoveries is increasing. The drive to increase domestic oil production has increased the importance of enhanced recovery by gas injection. These two factors suggest an increased need for compositional reservoir modeling. Conventional reservoir modeling is also likely to remain important for some time. In the past, two separate simulators have been developed and maintained for studying these two classes of problems. This result was dictated by the fact that compositional models have generally required substantially greater computing time than black-oil models. This paper describes a compositional modeling approach paper describes a compositional modeling approach useful for simulating both black-oil and compositional problems. The approach is based on the use of explicit problems. The approach is based on the use of explicit flow coefficients. For compositional modeling, two basic methods of solution have been proposed. We call these methods "Newton-Raphson" and "non-Newton-Raphson" methods. These methods differ in the manner in which a pressure equation is formed. In the Newton-Raphson method the iterative technique specifies how the pressure equation is formed. In the non-Newton-Raphson method, the composition dependence of certain ten-ns is neglected to form the pressure equation. With the non-Newton-Raphson pressure equation. With the non-Newton-Raphson methods, three to eight iterations have been reported per time step. Our experience with the Newton-Raphson method indicates that one to three iterations per tune step normally is sufficient. In the present study a Newton-Raphson iteration sequence is used. The calculations are organized in a manner which is both efficient and for which different fluid property descriptions can be accommodated readily. Early compositional simulators were based on K-values that were expressed as a function of pressure and convergence pressure. A number of potential difficulties are inherent in this approach. More recently, cubic equations of state such as the Redlich-Kwong, or Peng-Robinson appear to be more popular for the correlation Peng-Robinson appear to be more popular for the correlation of fluid properties. SPEJ p. 727


Sign in / Sign up

Export Citation Format

Share Document