black oil model
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
pp. 1-18
Author(s):  
Jingqi Lin ◽  
Ruizhong Jiang ◽  
Zeyang Shen ◽  
Qiong Wang ◽  
Yongzheng Cui ◽  
...  

Abstract In this paper, the characterization parameter ‘effective displacement flux’ is employed to describe the flushing intensity and a new numerical simulator in which the rock-fluid properties considered functions of the effective displacement flux is developed based on the black oil model. Additionally, a conceptual reservoir model is established to validate the effective characterization of the time-varying mechanisms: the time-varying oil viscosity can characterize the viscous fingering of the water phase the time-varying absolute permeability can present the aggravation of reservoir heterogeneity, the alteration of wettability is characterized with the time-varying relative permeability, and the ultimate recovery will increase with the combined effect of all three time-varying factors. Eventually, the new simulator is applied to the simulation of an actual waterflooding reservoir to illustrate the assistance in history matching. The simulation results of our simulator can readily match the history data, which proves that the consideration of comprehensive time-varying rock-fluid properties can significantly improve the accuracy during the numerical simulation of waterflooding reservoirs.


Author(s):  
Akinsete O. Oluwatoyin ◽  
Anuka A. Agnes

Pressure depletion in gas-condensate reservoirs create two-phase flow. It is pertinent to understand the behavior of gas-condensate reservoirs as pressure decline in order to develop proper producing strategies that would increase gas and condensate productivity. Eclipse 300 was used to simulate gas-condensate reservoirs, a base case model was created using both black-oil and compositional models. The effects of three Equation of States (EOS) incorporated into the models were analysed and condensate dropout effect on relative permeability was studied. Analysis of various case models showed that, gas production was maintained at 500MMSCF/D for about 18 and 12 months for black-oil and compositional models, respectively. However, the compositional model revealed that condensate production began after a period of two months at 50MSTB/D whereas for the black oil model, condensate production began immediately at 32MSTB/D. Comparison of Peng-Robinson EOS, Soave-Redlich-Kwong EOS and Schmidt Wenzel EOS gave total estimates of condensate production as 19MMSTB, 15MMSTB and 9MMSTB and initial values of gas productivity index as 320, 380 and 560, respectively. The results also showed that as condensate saturation increased, the relative permeability of gas decreased from 1 to 0 while the relative permeability of oil increased from 0.15 to 0.85. The reservoir simulation results showed that compositional model is better than black-oil model in modelling for gas-condensate reservoirs. Optimal production was obtained using 3-parameter Peng-Robinson and Soave-Redlich-Kwong EOS which provide a molar volume shift to prevent an underestimation of liquid density and saturations. Phase behaviour and relative permeability affect the behaviour of gas-condensate reservoirs.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2021 ◽  
Author(s):  
Ahmad Ali Manzoor

Chemical-based enhanced oil recovery (EOR) techniques utilize the injection of chemicals, such as solutions of polymers, alkali, and surfactants, into oil reservoirs for incremental recovery. The injection of a polymer increases the viscosity of the injected fluid and alters the water-to-oil mobility ratio which in turn improves the volumetric sweep efficiency. This research study aims to investigate strategies that would help intensify oil recovery with the polymer solution injection. For that purpose, we utilize a lab-scale, cylindrical heavy oil reservoir model. Furthermore, a dynamic mathematical black oil model is developed based on cylindrical physical model of homogeneous porous medium. The experiments are carried out by injecting classic and novel partially hydrolyzed polyacrylamide solutions (concentration: 0.1-0.5 wt %) with 1 wt % brine into the reservoir at pressures in the range, 1.03-3.44 MPa for enhanced oil recovery. The concentration of the polymer solution remains constant throughout the core flooding experiment and is varied for other subsequent experimental setup. Periodic pressure variations between 2.41 and 3.44 MPa during injection are found to increase the heavy oil recovery by 80% original-oil-in-place (OOIP). This improvement is approximately 100% more than that with constant pressure injection at the maximum pressure of 3.44 MPa. The experimental oil recoveries are in fair agreement with the model calculated oil production with a RMS% error in the range of 5-10% at a maximum constant pressure of 3.44 MPa.


2021 ◽  
Vol 321 ◽  
pp. 01018
Author(s):  
Tuqa Abdulrazzaq ◽  
Hussein Togun ◽  
Dalia Haider ◽  
Mariam Ali ◽  
Saja Hamadi

The measurement of oil reservoirs and their performance with hydrocarbon reservoirs is used to distinguish the properties of reservoir fluids, which is significant in various reservoir studies. As a result, in the various oil industries, adopting the appropriate methods to obtain accurate property values is very important. The current paper is about a case study of the BUZURGAN Oilfield and how the PVTp software was used to predict phase activity and physical properties. To understand the properties of fluids for the reservoir and phase behavior, the black oil model and the equation of state (EoS) model are used. (Glaso) correlation is used to calculate the bubble point strain, solubility, and formation volume factor. The Beal's correlation was also used to measure viscosity, while the equation of state (EoS) model was used to determine phase behavior and density. Furthermore, the properties of PVT were discovered using the software, and the results were compared to laboratory analysis of PVT, with suitable models being displayed. According to the findings, the used model has the highest saturation pressure, which was chosen for use in reservoir management processes and the preparation of a geological model to reflect the field later. It is clear that the program is appropriate due to the accurate dependence of PVT measurements on laboratory tests in the case that tests are required during the reservoir's productive existence.


Author(s):  
O. V. Burachok ◽  
D. V. Pershyn ◽  
S. V. Matkivskyi ◽  
O. R. Kondrat

Creation of geological and simulation models is the necessary condition for decision making towards current development status, planning of well interventions, field development planning and forecasting. In case of isothermal process, for proper phase behavior and phase transitions two key approaches are used: a) simplified model of non-volatile oil, so called “black oil” model, in which each phase – oil, water and gas, are represented by respective component, and solution to fiow equations is based on finding the saturations and pressures in each numerical cell, and change of reservoir fiuid properties is defined in table form as a function of pressure; b) compositional model, in which based on equation of state, phase equilibrium is calculated for hydrocarbon and non-hydrocarbon components, and during fiow calculations, apart from saturations and pressures, oil and gas mixture is brought to phase equilibrium, and material balance is calculated for each component in gas and liquid phase. To account for components volatility, the classic black oil model was improved by adding to the formulation gas solubility and vaporized oil content. This allows its application for the majority of oil and gas reservoirs, which are far from critical point and in which the phase transitions are insignificant. Due to smaller number of variables, numerical solution is simpler and faster. But, considering the importance and relevance of increasing the production of Ukrainian gas and optimization of gas-condensate fields development, the issue of simplified black oil PVT-model application for phase behavior characterization of gas-condensate reservoirs produced under natural depletion depending on the liquid hydrocarbon’s potential yield. Comparative study results on evaluation of production performance of synthetic reservoir for different synthetically-generated reservoir fiuids with different С5+ potential yield is provided as plots and tables. Based on the results the limit of simplified black oil PVT-model application and the moment of transition to compositional model for more precise results could be defined.


2020 ◽  
Vol 218 ◽  
pp. 02030
Author(s):  
Qilin Liu

According to the research on wellbore pressure temperature prediction of ultra-high pressure gas Wells, the influence of ultra-high pressure on wellbore fluid physical property parameters cannot be ignored, the component model is adopted to calculate wellbore fluid PVT physical property, and the multi-phase flow model is modified to accurately predict wellbore pressure temperature distribution. For the prediction of gas deviation factor of well flow and gas viscosity of well flow, the component model has a high precision. By comparing with the prediction results of 8 black oil model methods, the pressure has a great influence on the black oil model. When the pressure is equal to 100MPa, the deviation value between the predicted results of Gopal method and Dranchuk-Abu-Kassem method and the component model is greater than 0.1, which can no longer guarantee the accuracy of gas deviation factor and gas viscosity prediction. Therefore, it is recommended to use the component model to predict the deviation factor and gas viscosity of gas well flow.


Sign in / Sign up

Export Citation Format

Share Document