scholarly journals Entanglement-enhanced matter-wave interferometry in a high-finesse cavity

Author(s):  
James Thompson ◽  
Graham Greve ◽  
Chengyi Luo ◽  
Baochen Wu

Abstract Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms. Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles. Here we demonstrate cavity-QED entanglement of external degrees of freedom to realize a matter-wave interferometer of 700 atoms in which each individual atom falls freely under gravity and simultaneously traverses two paths through space while also entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed metrological gain 3.4^{+1.1}_{-0.9} dB and 2.5^{+0.6}_{-0.6} dB below the standard quantum limit respectively. An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with 1.7^{+0.5}_{-0.5} dB of directly observed metrological enhancement. These results open a new path for combining particle delocalization and entanglement for inertial sensors, searches for new physics, particles, and fields, future advanced gravitational wave detectors, and accessing beyond mean-field quantum many-body physics.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xinhe Jiang ◽  
Kun Wang ◽  
Kaiyi Qian ◽  
Zhaozhong Chen ◽  
Zhiyu Chen ◽  
...  

Abstract Quantum devices for generating entangled states have been extensively studied and widely used. As so, it becomes necessary to verify that these devices truly work reliably and efficiently as they are specified. Here we experimentally realize the recently proposed two-qubit entangled state verification strategies using both local measurements (nonadaptive) and active feed-forward operations (adaptive) with a photonic platform. About 3283/536 number of copies (N) are required to achieve a 99% confidence to verify the target quantum state for nonadaptive/adaptive strategies. These optimal strategies provide the Heisenberg scaling of the infidelity $${\it{\epsilon }}$$ ϵ as a function of N ($${\it{\epsilon }}\sim N^{r}$$ ϵ ~ N r ) with the parameter r = −1, exceeding the standard quantum limit with r = −0.5. We experimentally obtain the scaling parameters of r = −0.88 ± 0.03 and −0.78 ± 0.07 for nonadaptive and adaptive strategies, respectively. Our experimental work could serve as a standardized procedure for the verification of quantum states.


2019 ◽  
Vol 21 (9) ◽  
pp. 093047 ◽  
Author(s):  
C R Müller ◽  
F Sedlmeir ◽  
V O Martynov ◽  
Ch Marquardt ◽  
A V Andrianov ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chang-Woo Lee ◽  
Jae Hoon Lee ◽  
Hyojun Seok

Abstract We analyze the performance of a force detector based on balanced measurements with a Mach–Zehnder interferometer incorporating a standard optomechanical cavity. The system is driven by a coherent superposition of coherent light and squeezed vacuum field, providing quantum correlation along with optical coherence in order to enhance the measurement sensitivity beyond the standard quantum limit. We analytically find the optimal measurement strength, squeezing direction, and squeezing strength at which the symmetrized power spectral density for the measurement noise is minimized below the standard quantum limit. This force detection scheme based on a balanced Mach–Zehnder interferometer provides better sensitivity compared to that based on balanced homodyne detection with a local oscillator in the low frequency regime.


2020 ◽  
Vol 13 (5) ◽  
Author(s):  
Shuro Izumi ◽  
Jonas S. Neergaard-Nielsen ◽  
Shigehito Miki ◽  
Hirotaka Terai ◽  
Ulrik L. Andersen

Sign in / Sign up

Export Citation Format

Share Document