cavity qed
Recently Published Documents


TOTAL DOCUMENTS

1242
(FIVE YEARS 99)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Kazuki Koshino ◽  
Tomohiro Shitara ◽  
Ziqiao Ao ◽  
Kouichi Semba
Keyword(s):  

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Asha Devi ◽  
Sarath D. Gunapala ◽  
Malin Premaratne

2021 ◽  
Vol 127 (27) ◽  
Author(s):  
Alexander Ahrens ◽  
Chenhang Huang ◽  
Matt Beutel ◽  
Cody Covington ◽  
Kálmán Varga

Author(s):  
Liaqat Ali ◽  
Rameez -ul-Islam ◽  
Manzoor Ikram ◽  
Tasawar Abbas ◽  
Iftikhar Ahmad

Abstract The conventional teleportation protocol requires a state entangled in only one degree of freedom, while hyperteleportation requires more than single degree of freedom to complete the task. The hyperteleportation schematics are demonstrated only for the photonic systems, where in the present paper we extend the idea to a hyperteleportation protocol involving the atomic internal and external states. The protocol is deterministically engineered through resonant and off-resonant Atomic Bragg Diffraction (ABD) involving two-level neutral atoms under standard cavity-QED working environment. Moreover, the longer interaction time Bragg's regime with well separated transverse momenta states as an output of the neutral atoms guarantees the high enough engineering fidelities with reduced decoherence rates. The experimental parameters for the demonstration of the proposed scheme are also elucidated briefly describing the optimistic feasibility for the experimental execution of the proposed schematics.


Author(s):  
Mingzhu Weng ◽  
Zhihai Wang

Abstract In this paper, we investigate the energy spectrum and coherent dynamical process in a cavity-QED setup with a moving emitter, which is subject to a harmonic potential. We find that the vibration of the emitter will induce the effective Kerr and optomechanical interactions. With the assistance of Bogliubov operators approach, we obtain the energy spectrum of the system exactly. Furthermore, we show that the dynamics of the system exhibit a two-frequency Rabi oscillation behavior. We explain such behavior by optomechanical interaction induced quantum transition between emitter-cavity dressed states. We hope that the interaction between cavity mode and moving emitter will provide a versatile platform to explore more exotic effects and potential applications in cavity-QED scenario.


2021 ◽  
Author(s):  
Jonas Larson ◽  
Themistoklis Mavrogordatos
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
L. C. Contamin ◽  
M. R. Delbecq ◽  
B. Douçot ◽  
A. Cottet ◽  
T. Kontos

AbstractTopological excitations, such as Majorana zero modes, are a promising route for encoding quantum information. Topologically protected gates of Majorana qubits, based on their braiding, will require some form of network. Here, we propose to build such a network by entangling Majorana matter with light in a microwave cavity QED set-up. Our scheme exploits a light-induced interaction which is universal to all the Majorana nanoscale circuit platforms. This effect stems from a parametric drive of the light-matter coupling in a one-dimensional chain of physical Majorana modes. Our set-up enables all the basic operations needed in a Majorana quantum computing platform such as fusing, braiding, the crucial T-gate, the read-out, and importantly, the stabilization or correction of the physical Majorana modes.


2021 ◽  
Author(s):  
James Thompson ◽  
Graham Greve ◽  
Chengyi Luo ◽  
Baochen Wu

Abstract Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms. Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles. Here we demonstrate cavity-QED entanglement of external degrees of freedom to realize a matter-wave interferometer of 700 atoms in which each individual atom falls freely under gravity and simultaneously traverses two paths through space while also entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed metrological gain 3.4^{+1.1}_{-0.9} dB and 2.5^{+0.6}_{-0.6} dB below the standard quantum limit respectively. An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with 1.7^{+0.5}_{-0.5} dB of directly observed metrological enhancement. These results open a new path for combining particle delocalization and entanglement for inertial sensors, searches for new physics, particles, and fields, future advanced gravitational wave detectors, and accessing beyond mean-field quantum many-body physics.


Sign in / Sign up

Export Citation Format

Share Document