Entropic Uncertainty Principle, Partition Function and Holographic Principle derived from Liouville's Theorem

Author(s):  
M.C. Parker ◽  
C. Jeynes

Abstract An entropic version of Liouville’s theorem is defined in terms of the conjugate variables (“hyperbolic position” and “entropic momentum”) of an entropic Hamiltonian. It is used to derive the Holographic Principle as applied to holomorphic structures that represent maximum entropy configurations. The Bekenstein-Hawking expression for black hole entropy is a consequence. Based on the entropic commutator derived from Liouville’s theorem and the same entropic conjugate variables, an entropic Uncertainty Principle (in units of Boltzmann’s constant) isomorphic to the kinematic Uncertainty Principle (in units of Planck’s constant) is also derived. These formal developments underpin the previous treatment of Quantitative Geometrical Thermodynamics (QGT) which has established (entirely on geometric entropy grounds) the stability of the double-helix, the double logarithmic spiral, and the sphere. Since in the QGT formalism the Boltzmann and Planck constants are quanta of quantities orthogonal to each other in Minkowski spacetime, a solution of the Schrödinger Equation is demonstrated isomorphic to a probability term of an entropic Partition Function, where both are defined by path integrals obeying the stationary principle: this isomorphism represents an important symmetry of the formalism. The geometry of a holomorphic structure must also exhibit at least C2 symmetry.

2011 ◽  
Vol 7 (10) ◽  
pp. 752-756 ◽  
Author(s):  
Chuan-Feng Li ◽  
Jin-Shi Xu ◽  
Xiao-Ye Xu ◽  
Ke Li ◽  
Guang-Can Guo

2009 ◽  
Vol 18 (14) ◽  
pp. 2323-2327
Author(s):  
CENALO VAZ

The existence of a thermodynamic description of horizons indicates that space–time has a microstructure. While the "fundamental" degrees of freedom remain elusive, quantizing Einstein's gravity provides some clues about their properties. A quantum AdS black hole possesses an equispaced mass spectrum, independent of Newton's constant, G, when its horizon radius is large compared to the AdS length. Moreover, the black hole's thermodynamics in this limit is inextricably connected with its thermodynamics in the opposite (Schwarzschild) limit by a duality of the Bose partition function. G, absent in the mass spectrum, re-emerges in the thermodynamic description through the Schwarzschild limit, which should be viewed as a natural "ground state." It seems that the Hawking–Page phase transition separates fundamental, "particle-like" degrees of freedom from effective, "geometric" ones.


Sign in / Sign up

Export Citation Format

Share Document