black hole entropy
Recently Published Documents


TOTAL DOCUMENTS

633
(FIVE YEARS 99)

H-INDEX

63
(FIVE YEARS 4)

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jin-Yi Pang ◽  
Jiunn-Wei Chen

AbstractThe renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a λϕ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat 2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our study suggests that entanglement entropy is renormalizable and is a physical quantity.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Bert van Geemen ◽  
Alessio Marrani ◽  
Francesco Russo

Abstract We consider Bekenstein-Hawking entropy and attractors in extremal BPS black holes of $$ \mathcal{N} $$ N = 2, D = 4 ungauged supergravity obtained as reduction of minimal, matter-coupled D = 5 supergravity. They are generally expressed in terms of solutions to an inhomogeneous system of coupled quadratic equations, named BPS system, depending on the cubic prepotential as well as on the electric-magnetic fluxes in the extremal black hole background. Focussing on homogeneous non-symmetric scalar manifolds (whose classification is known in terms of L(q, P, Ṗ) models), under certain assumptions on the Clifford matrices pertaining to the related cubic prepotential, we formulate and prove an invertibility condition for the gradient map of the corresponding cubic form (to have a birational inverse map which is given by homogeneous polynomials of degree four), and therefore for the solutions to the BPS system to be explicitly determined, in turn providing novel, explicit expressions for the BPS black hole entropy and the related attractors as solution of the BPS attractor equations. After a general treatment, we present a number of explicit examples with Ṗ = 0, such as L(q, P), 1 ⩽ q ⩽ 3 and P ⩾ 1, or L(q, 1), 4 ⩽ q ⩽ 9, and one model with Ṗ = 1, namely L(4, 1, 1). We also briefly comment on Kleinian signatures and split algebras. In particular, we provide, for the first time, the explicit form of the BPS black hole entropy and of the related BPS attractors for the infinite class of L(1, P) P ⩾ 2 non-symmetric models of $$ \mathcal{N} $$ N = 2, D = 4 supergravity.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022042
Author(s):  
Chengyu Liu ◽  
Minxing Wang ◽  
Guanxing Yi ◽  
Yi Zhuang

Abstract The logarithm correction of black hole entropy is important in understanding the essence of black hole entropy, providing a more accurate entropy calculation. We reviewed the mainstream method of logarithm correction of black hole entropy, including quantum loop gravity correction, conformal field theory correction, and classical thermal correction. Specifically, the correction of quantum loop gravity presents a stable general expression of logarithm correction, which only depends on the surface area of the black hole and solves the problem of meaningless entropy solution under a large length scale. Besides, the correction of the Cardy formula of conformal field theory is limited for the third term in depends on the mass of the black hole, which will finally lead to the unstable coefficient before the correction term. Finally, the correction deduced by the classical thermal method also gives a general expression of black hole entropy. In contrast, the entropy of BTZ black hole has a different coefficient before the logarithm term comparing to other kinds of the black hole. These results shed light for the research in general logarithm correction of black hole entropy, which is suitable for all kinds of black holes.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ram Brustein ◽  
Yoav Zigdon

Abstract We calculate the entropy of an asymptotically Schwarzschild black hole, using an effective field theory of winding modes in type II string theory. In Euclidean signature, the geometry of the black hole contains a thermal cycle which shrinks towards the horizon. The light excitations thus include, in addition to the metric and the dilaton, also the winding modes around this cycle. The winding modes condense in the near-horizon region and source the geometry of the thermal cycle. Using the effective field theory action and standard thermodynamic relations, we show that the entropy, which is also sourced by the winding modes condensate, is exactly equal to the Bekenstein-Hawking entropy of the black hole. We then discuss some properties of the winding mode condensate and end with an application of our method to an asymptotically linear-dilaton black hole.


2021 ◽  
pp. 2150193
Author(s):  
Taha A. Malik ◽  
Rafael Lopez-Mobilia

Various proposals for gravitational entropy densities have been constructed from the Weyl tensor. In almost all cases, though, these studies have been restricted to general relativity, and little has been done in modified theories of gravity. However, in this paper, we investigate the simplest proposal for an entropy density constructed from the Weyl tensor in five-dimensional Gauss–Bonnet gravity and find that it fails to reproduce the expected entropy of a black hole.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sabrina Pasterski ◽  
Herman Verlinde

Abstract We build on the observation by Hawking, Perry and Strominger that a global black hole space-time supports a large number of soft hair degrees of freedom to shed new light on the firewall argument by Almheiri, Marolf, Polchinski, and Sully. We propose that the soft hair Goldstone mode is encoded in a classical transition function that connects the asymptotic and near horizon region. The entropy carried by the soft hair is part of the black hole entropy and encoded in the outside geometry. We argue that the infalling observer automatically measures the classical value of the soft mode before reaching the horizon and that this measurement implements a code subspace projection that enables the reconstruction of interior operators. We use the soft hair dynamics to introduce an observer dependent notion of the firewall and show that for an infalling observer it recedes inwards into the black hole interior: the observer never encounters a firewall before reaching the singularity. Our results indicate that the HPS black hole soft hair plays an essential role in dissolving the AMPS firewall.


2021 ◽  
pp. 2150158
Author(s):  
M. Dehghani ◽  
B. Pourhassan

In this paper, we consider three-dimensional massive gravity’s rainbow and obtain black hole solutions in three different cases of Born–Infeld, logarithmic, and exponential theories of nonlinear electrodynamics. We discuss the horizon structure and geometrical properties. Then, we study thermodynamics of these models by considering the first-order quantum correction effects, which appear as a logarithmic term in the black hole entropy. We discuss such effects on the black hole stability and phase transitions. We find that due to the quantum corrections, the second-order phase transition happens in Born–Infeld and logarithmic models. We obtain the modified first law of black hole thermodynamics in the presence of logarithmic corrections.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Finn Larsen ◽  
Siyul Lee

Abstract We revisit the microscopic description of AdS3 black holes in light of recent progress on their higher dimensional analogues. The grand canonical partition function that follows from the AdS3/CFT2 correspondence describes BPS and nearBPS black hole thermodynamics. We formulate an entropy extremization principle that accounts for both the black hole entropy and a constraint on its charges, in close analogy with asymptotically AdS black holes in higher dimensions. We are led to interpret supersymmetric black holes as ensembles of BPS microstates satisfying a charge constraint that is not respected by individual states. This interpretation provides a microscopic understanding of the hitherto mysterious charge constraints satisfied by all BPS black holes in AdS. We also develop thermodynamics and a nAttractor mechanism of AdS3 black holes in the nearBPS regime.


Sign in / Sign up

Export Citation Format

Share Document