scholarly journals Study on the Plasmonic Properties of Ag-Coated Spherical Dielectric Nanoparticles by Finite-Difference Time-Domain Calculations

Author(s):  
Qing-Wei Sun ◽  
Qi Sun ◽  
Qing-Yu Zhang ◽  
Nan Zhou ◽  
Xi-Na Li

Abstract The optical properties of nanostructures are rather important for designing plasmonic devices. In this work, the plasmonic properties of Ag-coated spherical dielectric nanoparticles (NPs), namely, Ag-SiO2-NPs, Ag-ZnO-NPs, and Ag-TiO2-NPs, were studied using a method of finite-difference time-domain calculations. It was found that the Ag-coated dielectric NPs start to exhibit unique plasmonic properties different from Ag-NPs as the thickness of Ag shells is reduced to be less than a critical value, which is basically determined by the penetration depth of light in silver. On the other hand, the core-shell structures of Ag-coated dielectric NPs were found to be of benefit to the plasmonic resonance high-efficiently coupled with the incident light. In the extinction spectra of Ag-coated dielectric NPs with sufficient thin Ag shells, the dipole plasmonic resonance is predominant and exhibits a pronounced red-shift up to infrared band with increasing the NP sizes. In addition to the electromagnetic waves of emission towards the outside, the electromagnetic field in the dielectric NP inside is uniformly enhanced as well and both of dipole and quadrupole plasmonic resonances are identified. The Ag-coated dielectric NPs are suggested to have great potential in the plasmonic devices working in infrared band, such as the light emitters and SERS substrates for biosensing.

2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2622
Author(s):  
Xiaoran Ma ◽  
Bairui Du ◽  
Shengwang Tan ◽  
Haiying Song ◽  
Shibing Liu

Natural structural colors inspire people to obtain the technology of spectral characteristics by designing and preparing micro-nano structures on the material’s surface. In this paper, the finite difference time domain (FDTD) method is used to simulate the spectral selectivity of micro-nano grating on an Au surface, and the spectral response characteristics of different physical parameters to the incident light are obtained. The results show that, when the grating depth is shallow, the absorption peaks of TM polarized incident light on the material surface take on redshifts with the increase in the grating period. Meanwhile, when the depth-width ratio of the grating structure is high, the absorption peak appears in the reflection spectrum and presents a linear red shift with the increase in the grating period after the linearly polarized light TE wave incident on the surface of the micro-nano structure. At the same time, the wavelength of the absorption peak of the reflection spectrum and the grating period take on one-to-one correspondence relations, and when the TM polarized light is incident, the reflection spectrum exhibits obvious selective absorption characteristic peaks at certain grating periods (for example, when the period is 0.4 μm, there are three absorption peaks at the wavelengths of 0.7, 0.95, and 1.55 μm). These simulation results can provide a good theoretical basis for the preparation of micro-nano structures with spectral regulation function in the practical application.


Sign in / Sign up

Export Citation Format

Share Document