biological tissue
Recently Published Documents


TOTAL DOCUMENTS

1995
(FIVE YEARS 317)

H-INDEX

73
(FIVE YEARS 6)

Author(s):  
R. Kaufmann ◽  
C. J. Zech ◽  
M. Takes ◽  
P. Brantner ◽  
F. Thieringer ◽  
...  

AbstractThree-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data. Median deltas (Δ) of luminal diameters were 0.35 mm for clear and 0.32 mm for flexible resin (216 measurements in total) with no significant differences (p > 0.05). Printing success was 85.2% for standard clear and 81.5% for the novel flexible resin. In conclusion, vascular 3D printing with silicone-like flexible resin was technically feasible and highly accurate. This is the first and largest consecutive case series of 3D-printed embolizations with a novel biological tissue mimicking material and is a promising next step in patient-specific procedure simulations in Interventional Radiology.


2022 ◽  
Vol 2155 (1) ◽  
pp. 012030
Author(s):  
G.A. Abdullaeva ◽  
G.A. Kulabdullaev ◽  
A.A. Kim ◽  
A.F. Nebesny ◽  
D.O. Yuldashev

Abstract In this study, we evaluate the features of dose enhancement with Gd contrast agent (Magnevist). Due to the increased relaxation time and high atomic number (z=64) Gd can be used in radiation therapy as a radiosensitizer. To perform a quantitative evaluation of the radiosensitization effect is determined a parameter called the dose enhancement factor - DEF. The DEF values were calculated based on the analysis of the mass absorption coefficients for gadolinium and biological tissue. An increase in DEF is observed when the radiation energy is higher than the K-shell ionization energy of Gd atoms. For the presence of 20315 ppm Gd contrast agent in biological tissue the dose enrichment factor is maximum DEF = 4.12 at photon irradiation energy 60 keV. Also, based on calculations for photon irradiation sources considered high degrees of dose enhancement occur for Am-241, Yb-196, and 100 kVp X-ray tube.


2022 ◽  
Vol 52 (1) ◽  
pp. 63-68
Author(s):  
A V Khilov ◽  
V A Shishkova ◽  
E A Sergeeva ◽  
D A Kurakina ◽  
M Yu Kirillin

Abstract An approach to fabricating agar phantoms mimicking spectral optical properties of biological tissues with fluorescent inclusions is proposed, which allows one to imitate the problem of optical visualisation of superficial biological tissues after the administration of a chlorin-based photosensitiser. The different arrangement of a fluorescent layer within a phantom makes it possible to simulate biological tissue in the cases of both topical application and intravenous injection of a photosensitiser. It is shown that absorption and scattering spectra of phantoms are in good agreement with the spectra of real biological tissues in the wavelength range of 500-800 nm. Changes in spectra of absorption and scattering coefficients of phantoms, as well as in their fluorescent properties induced by the addition of a fluorescent marker (chlorinbased photosensitiser) are demonstrated.


2021 ◽  
Vol 12 (4) ◽  
pp. 259-271
Author(s):  
N. V. Bezuglaya ◽  
A. A. Haponiuk ◽  
D. V. Bondariev ◽  
S. A. Poluectov ◽  
V. A. Chornyi ◽  
...  

Biomedical photometersʼ information-measuring systems with ellipsoidal reflectors have acceptable results in determining of biological tissues optical properties in the visible and near-infrared spectral range. These photometers make it possible to study the optical radiation propagation in turbid media for direct and inverse problems of light-scattering optics. The purpose of this work is to study the influence of the ellipsoidal reflectors design parameters on the results of biomedical photometry when simulating the optical radiation propagation in a system of biological tissue and reflectors in transmitted and reflected light.The paper substantiates the choice of the ellipsoidal reflectors’ focal parameter for efficient registration of forward and backscattered light. The methodology of the process is illustrated by the results of a model experiment using the Monte Carlo simulation for samples of human brain white and gray matter at the visible range of 405 nm, 532 nm, and 650 nm. The total transmittance, diffuse reflectance, and absorption graphs depending on the sample thickness were obtained. Based on the introduced concepts of the ellipsoidal reflector efficiency index and its efficiency factor, the expediency of choosing the ellipsoidal reflectors focal parameter is analyzed to ensure the registration of the maximum amount of scattered light. The graphs of efficiency index in reflected and transmitted light for different thickness samples of white and gray matter and efficiency factors depending on the sample thickness were obtained.The influence of the reflectors ellipticity on the illuminance of various zones of photometric images using the example of an absorbing biological medium – pig liver tissue – at wavelength of 405 nm with a Monte Carlo simulation was analyzed.The optical properties of biological media (scattering and absorption coefficients, scattering anisotropy factor, refractive index) and the samples’ geometric dimensions, particularly the thickness, are predetermined when choosing the ellipsoidal reflectors parameters for registration of the scattered light. Coordinates of the output of photons and their statistical weight obtained in the Monte Carlo simulation of light propagation in biological tissue have a physical effect on a characteristic scattering spot formation in the receiving plane of a biomedical photometer with ellipsoidal reflectors.


2021 ◽  
Author(s):  
Serhii Mamilov ◽  
Igor Bekh ◽  
Elizabeth Bekh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document