A THEORETICAL ESTIMATE OF TURBULENT WALL PRESSURE FLUCTUATIONS ON A COMPLIANT BOUNDARY

1966 ◽  
Author(s):  
Frank M. White ◽  
Robert E. Quaglieri
1979 ◽  
Vol 101 (2) ◽  
pp. 89-95 ◽  
Author(s):  
W. H. Pitts ◽  
C. F. Dewey

The power spectral density of turbulent wall pressure fluctuations was measured in a tube downstream of a model arterial constriction. The flow parameters were varied from steady flow to conditions simulating human arterial pulsatile flow. Within the experimental uncertainty (±10 percent in characteristic turbulent frequency, fo, and ±25 percent in absolute rms pressure fluctuation amplitude), turbulent flow at the peak of systole produces wall pressure fluctuations identical to those of a steady flow at the same Reynolds number.


1994 ◽  
Vol 116 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Ronald L. Panton ◽  
Gilles Robert

Wall-pressure fluctuations can be represented by a spectrum level that is a function of flow-direction wavenumber and frequnecy, Φ (k1, ω). In the theory developed herein the frequency is replaced by a phase speed; ω = ck1. At low wavenumbers the spectrum is a universal function if nondimensionalized by the friction velocity u* and the boundary layer thickness δ, while at high wavenumbers another universal function holds if nondimensionalized by u* and viscosity ν. The theory predicts that at moderate wavenumbers the spectrum must be of the form Φ+ (k+1, ω+ = c+ k+1) = k+1 − 2 P+ (Δc+) where P+ (Δc+) is a universal function. Here Δc+ is the difference between the phase speed and the speed for which the maximum of Φ+ occurs. Similar laws exist in outer variables. New measurements of the wall-pressure are given for a large Reynolds number range; 45,000 < Re = Uoδ/ν < 113,000. The scaling laws described above were tested with the experimental results and found to be valid. An experimentally determined curve for P+ (Δc+) is given.


Sign in / Sign up

Export Citation Format

Share Document