wall pressure fluctuations
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 49)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Akash Haridas ◽  
Nagabhushana Rao Vadlamani

Abstract In this work, we model the spectra of wall-pressure fluctuations beneath subsonic, supersonic and hypersonic turbulent boundary layers (TBLs) at zero pressure gradient using neural networks (NNs). We collect and compile data pertaining to wall-pressure fluctuation spectra from several experimental and computational studies on TBLs. In contrast to conventional methods of hand-tuning the parameters of a model to fit the available data, the use of modern powerful statistical learning techniques such as neural networks provide an automatic and quick way to fit a model. We explore four different scenarios of making use of the compiled data. In comparison with COMPRA-G, an empirical model recently proposed to account for compressibility effects in TBLs, we achieve a better fit to observed data using the NN model, particularly at low frequencies of the spectra.


Author(s):  
Chi Zhu ◽  
Jung-Hee Seo ◽  
Rajat Mittal

Abstract In this study, a novel reduced degree-of-freedom (rDOF) aortic valve model is employed to investigate the fluid-structure interaction and hemodynamics associated with aortic stenosis. The dynamics of the valve leaflets are determined by an ordinary differential equation with two parameters and this rDOF model is shown to reproduce key features of more complex valve models. The hemodynamics associated with aortic stenosis is studied for three cases: a healthy case and two stenosed cases. The focus of the study is to correlate the hemodynamic features with the source generation mechanism of systolic murmurs associated with aortic stenosis. In the healthy case, extremely weak flow fluctuations are observed. However, in the stenosed cases, simulations show significant turbulent fluctuations in the asending aorta, which are responsible for the generation of strong wall pressure fluctuations after the aortic root mostly during the deceleration phase of the systole. The intensity of the murmur generation increases with the severity of the stenosis, and the source locations for the two diseased cases studied here lies around 1.0 inlet duct diameters ($D_o$) downstream of the ascending aorta.


2021 ◽  
Author(s):  
Changchang Wang ◽  
Guoyu Wang ◽  
Mindi Zhang ◽  
Qin Wu

Abstract This study experimentally investigates the statistics of wall-pressure fluctuations and their source inside attached cavitation under different cavity regimes. Experiments were conducted in the divergent section of a convergent-divergent channel at a constant Reynolds number of Re = 7.8 × 105 based on throat height, and different cavitation numbers σ = 1.18, 0.92, 0.82 and 0.78. Four high-frequency unsteady pressure transducers were flushed-mounted in the divergent section downstream the throat where cavitation develops to sample the unsteady pressure signals induced by cavity behaviors. Flow visualization and wall-pressure measurement in high frequency on the order of MHz were employed using a synchronizing sampling technique. Results are presented for sheet/cloud cavitating flows. Specifically, sheet cavitation with both inception shear layer and fully cavitated shear layer and cloud cavitation under re-entrant jet dominated shedding and shock wave dominated shedding are studied. Compared with re-entrant jet, the interactions between shock wave and cavity could induce pressure peaks with high magnitude within cavity, which will collapse the local vapor along its propagating path and reduce local void fraction. Furthermore, statistics analysis shows that within the cavity, wall-pressure fluctuations increase with the distance to cavity leading edge increase in the first half of cavity length, and the moments of the probability density distribution skewness and kurtosis factor decrease, indicating the asymmetry and intermittency of wall-pressure fluctuation signals decrease. In shock wave dominated cavity shedding condition, the skewness and kurtosis factor increase. These results can provide data to improve the accuracy of turbulence modeling in numerical simulation of turbulent cavitating flow.


2021 ◽  
Vol 263 (2) ◽  
pp. 4459-4470
Author(s):  
Shivam Sundeep ◽  
Xin Zhang ◽  
Siyang Zhong ◽  
Huanxian Bu

Aeroacoustic and aerodynamic characteristics of the turbulent boundary layer encountering a large obstacle are experimentally investigated in this paper. Two-dimensional obstacles with a square and a semi-circular cross-section mounted on a flat plate are studied in wind tunnel tests, with particular interests in the shear layer characteristics, wall pressure fluctuations, and far-field noise induced by the obstacles. Synchronized measurements of the far-field noise and the wall pressure fluctuations were conducted using microphone arrays in the far-field and flush-mounted in the plate, respectively. Additionally, the streamwise and wall-normal velocity fluctuations behind the obstacle were measured using the X-wire probe. The measured velocity profiles, spectra, and wall pressure spectra are compared, showing that the rectangular obstacle has a significant impact on both the turbulent flow and far-field noise. The large-scale vortical structures shed from the obstacles can be identified in the wall pressure spectra, the streamwise velocity spectra, and the wall pressure coherence analysis. Within the shear layer, the pairing of vortices occurs and the frequency of the broadband peak in the velocity spectra decreases as the shear layer grows downstream. Further eddy convective velocities of large-scale vortical structures inside the shear layer were analyzed based on the wall pressure fluctuations.


2021 ◽  
Author(s):  
Fernanda Leticia dos Santos ◽  
Nikolaj A. Even ◽  
Laura Botero ◽  
Cornelius Venner ◽  
Leandro D. de Santana

Author(s):  
David Lamidel ◽  
Guillaume Daviller ◽  
Michel Roger ◽  
Hélène Posson

A Large-Eddy Simulation of the tip leakage flow of a single airfoil is carried out. The configuration consists of a non-rotating, isolated airfoil between two horizontal plates with a gap of 10 mm between the tip of the airfoil and the lower plate. The Mach number of the incoming flow is 0.2, and the Reynolds number based on the chord is 9.3 × 105. The objective of the present study is to investigate the best way to compute both the aerodynamics and acoustics of the tip leakage flow. In particular, the importance of the inflow conditions on the prediction of the tip leakage vortex and the airfoil loading is underlined. On the other hand, the complex structure of the tip leakage vortex and its convection along the airfoil was recovered due to the use of a mesh adaptation based on the dissipation of the kinetic energy. Finally, the ability of the wall law to model the flow in the tip leakage flow region was proven in terms of wall pressure fluctuations and acoustics in the far-field.


Sign in / Sign up

Export Citation Format

Share Document