scholarly journals Robust Digital Data Hiding in Low Coefficient Region of Image

Author(s):  
Nomaan Jaweed Mohammed ◽  
◽  
Mohamed Manzoor Ul Hassan ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 639-646
Author(s):  
A. Rasmi ◽  
B. Arunkumar ◽  
V. Mohammed Anees

2005 ◽  
Vol 05 (01) ◽  
pp. 5-35 ◽  
Author(s):  
SVIATOSLAV VOLOSHYNOVSKIY ◽  
FREDERIC DEGUILLAUME ◽  
OLEKSIY KOVAL ◽  
THIERRY PUN

In this paper we introduce and develop a framework for visual data-hiding technologies that aim at resolving emerging problems of modern multimedia networking. First, we introduce the main open issues of public network security, quality of services control and secure communications. Secondly, we formulate digital data-hiding into visual content as communications with side information and advocate an appropriate information-theoretic framework for the analysis of different data-hiding methods in various applications. In particular, Gel'fand-Pinsker channel coding with side information at the encoder and Wyner-Ziv source coding with side information at the decoder are used for this purpose. Finally, we demonstrate the possible extensions of this theory for watermark-assisted multimedia processing and indicate its perspectives for distributed communications.


Author(s):  
Md. Ashiqul Islam ◽  
Tasfia Tabassum ◽  
Md. Sagar Hossen ◽  
Shahed Hossain ◽  
Mosharof Hossain ◽  
...  

2018 ◽  
Vol 11 (2) ◽  
pp. 77
Author(s):  
Hendro Eko Prabowo ◽  
Tohari Ahmad

The development of information and communication technology that support digital data transmission such as text, image, audio and video gives several effects. One of them is data security that becomes the main priority during the transmission process. Pixel-Value-Ordering (PVO) which one of data hiding methods can be implemented to achieve the requirement. It embeds data on maximum pixel and minimum pixel in a blok which is a part of the carrier image. However, PVO has capacity a problem, that only 2 bits per block can be hidden. To handle this problem, we propose a new approach by dividing blocks dinamically based on its complexity. These blocks are grouped into 4: smooth block, semi-smooth block, normal block and rough block. Using this approach, the stego capacity can be improved up to 2.6 times in average of  previous method by keeping the quality stego more than 65 dB for all testing image.


Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

Convergent-beam electron diffraction (CBED) patterns contain an immense amount of information relating to the structure of the material from which they are obtained. The analysis of these patterns has progressed to the point that under appropriate, well specified conditions, the intensity variation within the CBED discs may be understood in a quantitative sense. Rossouw et al for example, have produced numerical simulations of zone-axis CBED patterns which show remarkable agreement with experimental patterns. Spence and co-workers have obtained the structure factor parameters for lowindex reflections using the intensity variation in 2-beam CBED patterns. Both of these examples involve the use of digital data. Perhaps the most frequent use for quantitative CBED analysis is the thickness determination described by Kelly et al. This analysis has been implemented in a variety of different ways; from real-time, in-situ analysis using the microscope controls, to measurements of photographic prints with a ruler, to automated processing of digitally acquired images. The potential advantages of this latter process will be presented.


Sign in / Sign up

Export Citation Format

Share Document