International Journal of Intelligent Computing and Cybernetics
Latest Publications


TOTAL DOCUMENTS

412
(FIVE YEARS 113)

H-INDEX

17
(FIVE YEARS 3)

Published By Emerald (Mcb Up )

1756-378x

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Leila Hashemi ◽  
Armin Mahmoodi ◽  
Milad Jasemi ◽  
Richard C. Millar ◽  
Jeremy Laliberté

PurposeIn the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The goal of addressing the issue is to reduce delivery times and system costs for retailers so that routing and distributor location may be determined.Design/methodology/approachBy adding certain unique criteria and limits, the issue becomes more realistic. Customers expect simultaneous deliveries and pickups, and retail service start times have soft and hard time windows. Transportation expenses, noncompliance with the soft time window, distributor construction, vehicle purchase or leasing, and manufacturing costs are all part of the system costs. The problem's conceptual model is developed and modeled first, and then General Algebraic Modeling System software (GAMS) and Multiple Objective Particle Swarm Optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGAII) algorithms are used to solve it in small dimensions.FindingsAccording to the mathematical model's solution, the average error of the two suggested methods, in contrast to the exact answer, is less than 0.7%. In addition, the performance of algorithms in terms of deviation from the GAMS exact solution is pretty satisfactory, with a divergence of 0.4% for the biggest problem (N = 100). As a result, NSGAII is shown to be superior to MOSPSO.Research limitations/implicationsSince this paper deals with two bi-objective models, the priorities of decision-makers in selecting the best solution were not taken into account, and each of the objective functions was given an equal weight based on the weighting procedures. The model has not been compared or studied in both robust and deterministic modes. This is because, with the exception of the variable that indicates traffic mode uncertainty, all variables are deterministic, and the uncertainty character of demand in each level of the supply chain is ignored.Practical implicationsThe suggested model's conclusions are useful for any group of decision-makers concerned with optimizing production patterns at any level. The employment of a diverse fleet of delivery vehicles, as well as the use of stochastic optimization techniques to define the time windows, demonstrates how successful distribution networks are in lowering operational costs.Originality/valueAccording to a multi-objective model in a three-echelon supply chain, this research fills in the gaps in the link between routing and location choices in a realistic manner, taking into account the actual restrictions of a distribution network. The model may reduce the uncertainty in vehicle performance while choosing a refueling strategy or dealing with diverse traffic scenarios, bringing it closer to certainty. In addition, two modified MOPSO and NSGA-II algorithms are presented for solving the model, with the results compared to the exact GAMS approach for medium- and small-sized problems.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Syed Haroon Abdul Gafoor ◽  
Padma Theagarajan

PurposeConventional diagnostic techniques, on the other hand, may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify, potentially resulting in misdiagnosis. Meanwhile, early nonmotor signs of Parkinson’s disease (PD) can be mild and may be due to variety of other conditions. As a result, these signs are usually ignored, making early PD diagnosis difficult. Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD (like, movement disorders or other Parkinsonian syndromes).Design/methodology/approachMedical observations and evaluation of medical symptoms, including characterization of a wide range of motor indications, are commonly used to diagnose PD. The quantity of the data being processed has grown in the last five years; feature selection has become a prerequisite before any classification. This study introduces a feature selection method based on the score-based artificial fish swarm algorithm (SAFSA) to overcome this issue.FindingsThis study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database. Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant. According to a few objective functions, features subset chosen should provide the best performance.Research limitations/implicationsIn many situations, this is an Nondeterministic Polynomial Time (NP-Hard) issue. This method enhances the PD detection rate by selecting the most essential features from the database. To begin, the data set's dimensionality is reduced using Singular Value Decomposition dimensionality technique. Next, Biogeography-Based Optimization (BBO) for feature selection; the weight value is a vital parameter for finding the best features in PD classification.Originality/valuePD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor, kernel support vector machines, fuzzy convolutional neural network and random forest. The suggested classifiers are trained using data from UCI ML repository, and their results are verified using leave-one-person-out cross validation. The measures employed to assess the classifier efficiency include accuracy, F-measure, Matthews correlation coefficient.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fatima Isiaka ◽  
Zainab Adamu

PurposeOne of the contributions of artificial intelligent (AI) in modern technology is emotion recognition which is mostly based on facial expression and modification of its inference engine. The facial recognition scheme is mostly built to understand user expression in an online business webpage on a marketing site but has limited abilities to recognise elusive expressions. The basic emotions are expressed when interrelating and socialising with other personnel online. At most times, studying how to understand user expression is often a most tedious task, especially the subtle expressions. An emotion recognition system can be used to optimise and reduce complexity in understanding users' subconscious thoughts and reasoning through their pupil changes.Design/methodology/approachThis paper demonstrates the use of personal computer (PC) webcam to read in eye movement data that includes pupil changes as part of distinct user attributes. A custom eye movement algorithm (CEMA) is used to capture users' activity and record the data which is served as an input model to an inference engine (artificial neural network (ANN)) that helps to predict user emotional response conveyed as emoticons on the webpage.FindingsThe result from the error in performance shows that ANN is most adaptable to user behaviour prediction and can be used for the system's modification paradigm.Research limitations/implicationsOne of the drawbacks of the analytical tool is its inability in some cases to set some of the emoticons within the boundaries of the visual field, this is a limitation to be tackled within subsequent runs with standard techniques.Originality/valueThe originality of the proposed model is its ability to predict basic user emotional response based on changes in pupil size between average recorded baseline boundaries and convey the emoticons chronologically with the gaze points.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajanthaa Lakkshmanan ◽  
C. Anbu Ananth ◽  
S. Tiroumalmouroughane S. Tiroumalmouroughane

PurposeThe advancements of deep learning (DL) models demonstrate significant performance on accurate pancreatic tumor segmentation and classification.Design/methodology/approachThe presented model involves different stages of operations, namely preprocessing, image segmentation, feature extraction and image classification. Primarily, bilateral filtering (BF) technique is applied for image preprocessing to eradicate the noise present in the CT pancreatic image. Besides, noninteractive GrabCut (NIGC) algorithm is applied for the image segmentation process. Subsequently, residual network 152 (ResNet152) model is utilized as a feature extractor to originate a valuable set of feature vectors. At last, the red deer optimization algorithm (RDA) tuned backpropagation neural network (BPNN), called RDA-BPNN model, is employed as a classification model to determine the existence of pancreatic tumor.FindingsThe experimental results are validated in terms of different performance measures and a detailed comparative results analysis ensured the betterment of the RDA-BPNN model with the sensitivity of 98.54%, specificity of 98.46%, accuracy of 98.51% and F-score of 98.23%.Originality/valueThe study also identifies several novel automated deep learning based approaches used by researchers to assess the performance of the RDA-BPNN model on benchmark dataset and analyze the results in terms of several measures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

PurposeA cost-effective way to achieve fuel economy is to reinforce positive driving behaviour. Driving behaviour can be controlled if drivers can be alerted for behaviour that results in poor fuel economy. Fuel consumption must be tracked and monitored instantaneously rather than tracking average fuel economy for the entire trip duration. A single-step application of machine learning (ML) is not sufficient to model prediction of instantaneous fuel consumption and detection of anomalous fuel economy. The study designs an ML pipeline to track and monitor instantaneous fuel economy and detect anomalies.Design/methodology/approachThis research iteratively applies different variations of a two-step ML pipeline to the driving dataset for hatchback cars. The first step addresses the problem of accurate measurement and prediction of fuel economy using time series driving data, and the second step detects abnormal fuel economy in relation to contextual information. Long short-term memory autoencoder method learns and uses the most salient features of time series data to build a regression model. The contextual anomaly is detected by following two approaches, kernel quantile estimator and one-class support vector machine. The kernel quantile estimator sets dynamic threshold for detecting anomalous behaviour. Any error beyond a threshold is classified as an anomaly. The one-class support vector machine learns training error pattern and applies the model to test data for anomaly detection. The two-step ML pipeline is further modified by replacing long short term memory autoencoder with gated recurrent network autoencoder, and the performance of both models is compared. The speed recommendations and feedback are issued to the driver based on detected anomalies for controlling aggressive behaviour.FindingsA composite long short-term memory autoencoder was compared with gated recurrent unit autoencoder. Both models achieve prediction accuracy within a range of 98%–100% for prediction as a first step. Recall and accuracy metrics for anomaly detection using kernel quantile estimator remains within 98%–100%, whereas the one-class support vector machine approach performs within the range of 99.3%–100%.Research limitations/implicationsThe proposed approach does not consider socio-demographics or physiological information of drivers due to privacy concerns. However, it can be extended to correlate driver's physiological state such as fatigue, sleep and stress to correlate with driving behaviour and fuel economy. The anomaly detection approach here is limited to providing feedback to driver, it can be extended to give contextual feedback to the steering controller or throttle controller. In the future, a controller-based system can be associated with an anomaly detection approach to control the acceleration and braking action of the driver.Practical implicationsThe suggested approach is helpful in monitoring and reinforcing fuel-economical driving behaviour among fleet drivers as per different environmental contexts. It can also be used as a training tool for improving driving efficiency for new drivers. It keeps drivers engaged positively by issuing a relevant warning for significant contextual anomalies and avoids issuing a warning for minor operational errors.Originality/valueThis paper contributes to the existing literature by providing an ML pipeline approach to track and monitor instantaneous fuel economy rather than relying on average fuel economy values. The approach is further extended to detect contextual driving behaviour anomalies and optimises fuel economy. The main contributions for this approach are as follows: (1) a prediction model is applied to fine-grained time series driving data to predict instantaneous fuel consumption. (2) Anomalous fuel economy is detected by comparing prediction error against a threshold and analysing error patterns based on contextual information.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shanling Han ◽  
Shoudong Zhang ◽  
Yong Li ◽  
Long Chen

PurposeIntelligent diagnosis of equipment faults can effectively avoid the shutdown caused by equipment faults and improve the safety of the equipment. At present, the diagnosis of various kinds of bearing fault information, such as the occurrence, location and degree of fault, can be carried out by machine learning and deep learning and realized through the multiclassification method. However, the multiclassification method is not perfect in distinguishing similar fault categories and visual representation of fault information. To improve the above shortcomings, an end-to-end fault multilabel classification model is proposed for bearing fault diagnosis.Design/methodology/approachIn this model, the labels of each bearing are binarized by using the binary relevance method. Then, the integrated convolutional neural network and gated recurrent unit (CNN-GRU) is employed to classify faults. Different from the general CNN networks, the CNN-GRU network adds multiple GRU layers after the convolutional layers and the pool layers.FindingsThe Paderborn University bearing dataset is utilized to demonstrate the practicability of the model. The experimental results show that the average accuracy in test set is 99.7%, and the proposed network is better than multilayer perceptron and CNN in fault diagnosis of bearing, and the multilabel classification method is superior to the multiclassification method. Consequently, the model can intuitively classify faults with higher accuracy.Originality/valueThe fault labels of each bearing are labeled according to the failure or not, the fault location, the damage mode and the damage degree, and then the binary value is obtained. The multilabel problem is transformed into a binary classification problem of each fault label by the binary relevance method, and the predicted probability value of each fault label is directly output in the output layer, which visually distinguishes different fault conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepak S. Uplaonkar ◽  
Virupakshappa ◽  
Nagabhushan Patil

PurposeThe purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approachAfter collecting the ultrasound images, contrast-limited adaptive histogram equalization approach (CLAHE) is applied as preprocessing, in order to enhance the visual quality of the images that helps in better segmentation. Then, adaptively regularized kernel-based fuzzy C means (ARKFCM) is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.FindingsThe proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost. The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient, dice coefficient, precision, Matthews correlation coefficient, f-score and accuracy. The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value, which is better than the existing algorithms.Practical implicationsFrom the experimental analysis, the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm. However, the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/valueThe image preprocessing is carried out using CLAHE algorithm. The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm. In this research, the proposed algorithm has advantages such as independence of clustering parameters, robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
I. Nasurulla ◽  
R. Kaniezhil

PurposeWhereas a human operator is hard to observe the networking infrastructure and its functions on a continuous basis, wireless sensor network (WSN) nodes must overcome faults and route the perceived data to the sink/base stations (BS). The main target of this research article is to ensure the fault-tolerance (FT) capability, especially for transmission of sensed data to its destination without failure. Thus, through this paper, a fuzzy-based subordinate support (FSS) system is introduced as an additional feature to the existing optimized mobile sink improved energy efficient Power-Efficient Gathering in Sensor Information Systems (PEGASIS)-based (OMIEEPB) routing protocol, which lacks focus on ensuring the FT capabilities to the selected leaders of the corresponding chain. The central focus of FSS is to prevent the incident of fault, especially to the cluster heads.Design/methodology/approachWSNs encounter several issues owing to random events or different causes such as energy exhaustion, negative influences of the deployed region, signal interference, unbalanced supply routes, instability of motes due to misalignments and collision, which ultimately intends the failure of the network. Throughout the past investigation periods, researchers gain an understanding of fault-tolerant strategies that may improve the data integrity or reliability, precision, energy efficiency, the life expectancy of the system and reduce/prevent the failure of deployed components. If that is the case, the maximum chances of data packets (sensed) needed to be transferred reliably and accurately to the sink node or BS are degraded.FindingsThe FSS system utilizes the fuzzy logic concepts that have been proved to be beneficial since it permits several parameters to be combined effectively and evaluated. Here, near-point, residual energy, total operation time and past average processing time are considered as vital parameters. Moreover, the FSS system ensures the key performance activities of the network, such as optimization of response time, enhancing the data transmission reliability and accuracy. Simulation-based experiments are carried out through the Mannasim framework. After several experimental executions, the outcome of the proposed system is analyzed through elaborated comparison with the advanced existing systems.Originality/valueFinally, it has been observed that the FSS system not only enhanced the FT features to OMIEEPB but also assures the improved accuracy level (>95%) with optimized response time (<0.09 s) during data communication between leaders and the normal nodes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Chandramohan ◽  
M. Senthilkumaran

PurposeIn recent years, it is imperative to establish the structure of manufacturing industry in the context of smart factory. Due to rising demand for exchange of information with various devices, and huge number of sensor nodes, the industrial wireless networks (IWNs) face network congestion and inefficient task scheduling. For this purpose, software-defined network (SDN) is the emerging technology for IWNs, which is integrated into cognitive industrial Internet of things for dynamic task scheduling in the context of industry 4.0.Design/methodology/approachIn this paper, the authors present SDN based dynamic resource management and scheduling (DRMS) for effective devising of the resource utilization, scheduling, and hence successful transmission in a congested medium. Moreover, the earliest deadline first (EDF) algorithm is introduced in authors’ proposed work for the following criteria’s to reduce the congestion in the network and to optimize the packet loss.FindingsThe result shows that the proposed work improves the success ratio versus resource usage probability and number of nodes versus successful joint ratio. At last, the proposed method outperforms the existing myopic algorithms in terms of query response time, energy consumption and success ratio (packet delivery) versus number of increasing nodes, respectively.Originality/valueThe authors proposed a priority based scheduling between the devices and it is done by the EDF approach. Therefore, the proposed work reduces the network delay time and minimizes the overall energy efficiency.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bouslah Ayoub ◽  
Taleb Nora

PurposeParkinson's disease (PD) is a well-known complex neurodegenerative disease. Typically, its identification is based on motor disorders, while the computer estimation of its main symptoms with computational machine learning (ML) has a high exposure which is supported by researches conducted. Nevertheless, ML approaches required first to refine their parameters and then to work with the best model generated. This process often requires an expert user to oversee the performance of the algorithm. Therefore, an attention is required towards new approaches for better forecasting accuracy.Design/methodology/approachTo provide an available identification model for Parkinson disease as an auxiliary function for clinicians, the authors suggest a new evolutionary classification model. The core of the prediction model is a fast learning network (FLN) optimized by a genetic algorithm (GA). To get a better subset of features and parameters, a new coding architecture is introduced to improve GA for obtaining an optimal FLN model.FindingsThe proposed model is intensively evaluated through a series of experiments based on Speech and HandPD benchmark datasets. The very popular wrappers induction models such as support vector machine (SVM), K-nearest neighbors (KNN) have been tested in the same condition. The results support that the proposed model can achieve the best performances in terms of accuracy and g-mean.Originality/valueA novel efficient PD detection model is proposed, which is called A-W-FLN. The A-W-FLN utilizes FLN as the base classifier; in order to take its higher generalization ability, and identification capability is also embedded to discover the most suitable feature model in the detection process. Moreover, the proposed method automatically optimizes the FLN's architecture to a smaller number of hidden nodes and solid connecting weights. This helps the network to train on complex PD datasets with non-linear features and yields superior result.


Sign in / Sign up

Export Citation Format

Share Document