Parameterized Stable/Unstable Manifolds for Periodic Solutions of Implicitly Defined Dynamical Systems

2021 ◽  
Author(s):  
Jason Desmond Mireles James ◽  
Archana Neupane Timsina

Author(s):  
Frederic Schreyer ◽  
Remco Leine

Several numerical approaches have been developed to capture nonlinear effects of dynamical systems. In this paper we present a mixed shooting-harmonic balance method to solve large mechanical systems with local nonlinearities efficiently. The Harmonic Balance Method as well as the shooting method have both their pros and cons. The proposed mixed shooting-HBM approach combines the efficiency of HBM and the accuracy of the shooting method and has therefore advantages of both.



2010 ◽  
Vol 20 (02) ◽  
pp. 519-537 ◽  
Author(s):  
JIBIN LI ◽  
GUANRONG CHEN

Using analytic methods from the dynamical systems theory, some new nonlinear wave equations are investigated, which have exact explicit parametric representations of breaking loop-solutions under some fixed parameter conditions. It is shown that these parametric representations are associated with some families of open level-curves of traveling wave systems corresponding to such nonlinear wave equations, each of which lies in an area bounded by a singular straight line and the stable and the unstable manifolds of a saddle point of such a system.



1981 ◽  
Vol 21 (4) ◽  
pp. 763-785 ◽  
Author(s):  
Shigehiro Ushiki


Author(s):  
S. Pernot ◽  
C. H. Lamarque

Abstract A Wavelet-Galerkin procedure is introduced in order to obtain periodic solutions of multidegrees-of-freedom dynamical systems with periodic time-varying coefficients. The procedure is then used to study the vibrations of parametrically excited mechanical systems. As problems of stability analysis of nonlinear systems are often reduced after linearization to problems involving linear differential systems with time-varying coefficients, we demonstrate the method provides efficient practical computations of Floquet exponents and consequently allows to give estimators for stability/instability levels. A few academic examples illustrate the relevance of the method.





2010 ◽  
Vol 17 (1) ◽  
pp. 1-36 ◽  
Author(s):  
M. Branicki ◽  
S. Wiggins

Abstract. We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of transport barriers in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures have been the main tools for characterising transport barriers in the time-aperiodic situation. In this paper we consider a variety of examples, some with explicit solutions, that illustrate in a concrete manner the issues and phenomena that arise in the setting of finite-time dynamical systems. Of particular significance for geophysical applications is the notion of flow transition which occurs when finite-time hyperbolicity is lost or gained. The phenomena discovered and analysed in our examples point the way to a variety of directions for rigorous mathematical research in this rapidly developing and important area of dynamical systems theory.



2016 ◽  
Vol 260 (7) ◽  
pp. 6108-6129 ◽  
Author(s):  
Márcio R.A. Gouveia ◽  
Jaume Llibre ◽  
Douglas D. Novaes ◽  
Claudio Pessoa




Sign in / Sign up

Export Citation Format

Share Document