Volume 7B: 17th Biennial Conference on Mechanical Vibration and Noise
Latest Publications


TOTAL DOCUMENTS

172
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791880395

Author(s):  
Werner Haas ◽  
Michael Krommer ◽  
Hans Irschik

Abstract Linear Hamiltonian control systems with collocation of sensor and actuator are considered. Based on a frequency domain approach a controller design algorithm is stated. The design leads to a controller with internal dynamics which uses the output of the system and its first time derivative. The presence of internal dynamics in the controller is an extension of the usual PD–control law and a main result of the work. The design is based on the special properties of the proposed class of systems. In particular, these Hamiltonian systems are passive. It is shown that the design leads to strictly passive controllers for a certain choice of the design parameters. This is another significant result and offers a way for robust ℒ2–stabilization even in the case of infinite dimensional systems. Some features of the controller design are discussed with respect to an application, the control of a composite circular plate.


Author(s):  
H. Yabuno ◽  
R. Oowada ◽  
N. Aoshima

Abstract The present work describes a significant influence of a slight Coulomb damping on buckling of the simply supported beam subjected to an axial compressive force. Coulomb damping in the supporting points produces equilibrium regions around the well-known stable and unstable steady states under the pitchfork bifurcation which are analytically obtained in no consideration of the effect of Coulomb damping. After the transient response, the beam can stop any states in the equilibrium region, which becomes wider in the vicinity of the bifurcation point, depending on the initial condition. Also, the imperfection due to gravity is considered and it is theoretically shown that the equilibrium region is connected in the case when the imperfection due to gravity is relatively small comparing with the effect of the Coulomb damping, while the steady states under the pitchfork bifurcation in no consideration of the effect of Coulomb damping are necessarily disconnected by imperfection. Experimental results confirm the theoretically predicted effect of Coulomb damping in the supporting point on the buckling behavior of the beam.


Author(s):  
S. Pernot ◽  
C. H. Lamarque

Abstract A Wavelet-Galerkin procedure is introduced in order to obtain periodic solutions of multidegrees-of-freedom dynamical systems with periodic time-varying coefficients. The procedure is then used to study the vibrations of parametrically excited mechanical systems. As problems of stability analysis of nonlinear systems are often reduced after linearization to problems involving linear differential systems with time-varying coefficients, we demonstrate the method provides efficient practical computations of Floquet exponents and consequently allows to give estimators for stability/instability levels. A few academic examples illustrate the relevance of the method.


Author(s):  
Walter Sextro

Abstract In many technical contacts energy is dissipated because of dry friction and relative motion. This can be used to reduce the vibration amplitudes. For example, shrouds with friction interfaces are used to reduce the dynamic stresses in turbine blades. The three-dimensional motion of the blades results in a three-dimensional relative motion of the contact planes. The developed Point-Contact-Model is used to calculate the corresponding tangential and normal forces for each contact element. This Point-Contact-Model includes the roughness of the contact surfaces, the normal pressure distribution due to roughness, the stiffness in normal and tangential direction and dry friction. An experiment with two non-Hertzian contacts is used to verify the developed contact model. The comparison between measured and calculated frequency response functions for three-dimensional forced vibrations of the elastic structures shows a very good agreement.


Author(s):  
Richard H. Rand ◽  
Erika T. Wirkus ◽  
J. Robert Cooke

Abstract This work investigates the dynamics by which the bombardier beetle releases a pulsed jet of fluid as a defense mechanism. A mathematical model is proposed which takes the form of a pair of piece wise continuous differential equations with dependent variables as fluid pressure and quantity of reactant. The model is shown to exhibit an effective equilibrium point (EEP). Conditions for the existence, classification and stability of an EEP are derived and these are applied to the model of the bombardier beetle.


Author(s):  
M. X. Zhao ◽  
B. Balachandran ◽  
M. A. Davies ◽  
J. R. Pratt

Abstract In this paper, numerical and experimental investigations conducted into the dynamics and stability of partial immersion milling operations are presented. A mechanics based model is used for simulations of a wide range of milling operations and instabilities that arise due to regeneration and/or impact effects are studied. Poincaré sections are used to assess the stability of motions. The studies reveal that apart from Hopf bifurcation of a periodic motion, a period-doubling bifurcation of a periodic motion may also lead to chatter in partial immersion milling operations. Issues such as tooth contact time variation and structure of stability charts are also discussed.


Author(s):  
E. Pesheck ◽  
C. Pierre ◽  
S. W. Shaw

Abstract Equations of motion are developed for a rotating beam which is constrained to deform in the transverse (flapping) and axial directions. This process results in two coupled nonlinear partial differential equations which govern the attendant dynamics. These equations may be discretized through utilization of the classical normal modes of the nonrotating system in both the transverse and extensional directions. The resultant system may then be diagonalized to linear order and truncated to N nonlinear ordinary differential equations. Several methods are used to determine the model size necessary to ensure accuracy. Once the model size (N degrees of freedom) has been determined, nonlinear normal mode (NNM) theory is applied to reduce the system to a single equation, or a small set of equations, which accurately represent the dynamics of a mode, or set of modes, of interest. Results are presented which detail the convergence of the discretized model and compare its dynamics with those of the NNM-reduced model, as well as other reduced models. The results indicate a considerable improvement over other common reduction techniques, enabling the capture of many salient response features with the simulation of very few degrees of freedom.


Author(s):  
Jeff Fullilove ◽  
Norman Miller ◽  
Mark Shannon ◽  
Michael Philpot ◽  
Alexander Vakakis ◽  
...  

Abstract We study dynamic ice formation and breaking (IF/B) on a thin vibrating membrane. The complicated discontinuous dynamics of the membrane is studied experimentally using laser vibrometry. Although the fluid- and coolant-membrane interaction with simultaneous ice forming and breaking is a complicated dynamical phenomenon, the average rate of ice formed and broken can be approximately quantified. The analytical results are compared to experimental measurements.


Author(s):  
Jian Lin ◽  
Robert G. Parker

Abstract The natural frequency and vibration mode sensitivities to system parameters are rigorously investigated for both tuned and mistimed planetary gears. Parameters under consideration include support and mesh stiffnesses, component masses, and moments of inertia. Using the well-defined vibration mode properties of tuned (cyclically symmetric) planetary gears [1], the eigensensitivities are calculated and expressed in simple, exact formulae. These formulae connect natural frequency sensitivity with the modal strain or kinetic energy and provide efficient means to determine the sensitivity to all stiffness and inertia parameters by inspection of the modal energy distribution. While the terminology of planetary gears is used throughout, the results apply for general epicyclic gears.


Author(s):  
György Szász ◽  
George T. Flowers

Abstract A study of bladed-disk vibration control using magnetic bearings is presented. A key issue is a method for achieving practical controllability for such a system. For a tuned or symmetrically mistuned bladed disk assembly, several vibration modes are coupled only to the axial dynamics. Magnetic thrust bearings generally lack sufficient bandwidth to control even moderately high frequency vibration. A simplified model is developed and used to identify controllable vibration modes. A control strategy based upon deliberately mistuning in a non-symmetric manner is developed. The method presented does not require a thrust bearing for complete controllability of a bladed disk assembly via hub based actuators. However, since the linearized model for such a system has time periodic coefficients, an advanced time period controller is required. Controlling time periodic systems is a significant engineering challenge. One innovative approach that seems to be especially promising involves application of the Lyapunov Floquet (LF) transformation to eliminate time periodic terms from the system state matrices. Traditional control design techniques are then applied and the resulting gains transformed back to the original domain. Some simulation results are presented and discussed to illustrate the method.


Sign in / Sign up

Export Citation Format

Share Document