Finding Periodic Solutions of Forced Systems With Local Nonlinearities: A Mixed Shooting Harmonic Balance Method

Author(s):  
Frederic Schreyer ◽  
Remco Leine

Several numerical approaches have been developed to capture nonlinear effects of dynamical systems. In this paper we present a mixed shooting-harmonic balance method to solve large mechanical systems with local nonlinearities efficiently. The Harmonic Balance Method as well as the shooting method have both their pros and cons. The proposed mixed shooting-HBM approach combines the efficiency of HBM and the accuracy of the shooting method and has therefore advantages of both.

2016 ◽  
Vol 63 (2) ◽  
pp. 297-314 ◽  
Author(s):  
Frederic Schreyer ◽  
Remco I. Leine

Abstract In this paper we present a mixed shooting – harmonic balance method for large linear mechanical systems on which local nonlinearities are imposed. The standard harmonic balance method (HBM), which approximates the periodic solution in frequency domain, is very popular as it is well suited for large systems with many degrees of freedom. However, it suffers from the fact that local nonlinearities cannot be evaluated directly in the frequency domain. The standard HBM performs an inverse Fourier transform, then calculates the nonlinear force in time domain and subsequently the Fourier coefficients of the nonlinear force. The disadvantage of the HBM is that strong nonlinearities are poorly represented by a truncated Fourier series. In contrast, the shooting method operates in time-domain and relies on numerical time-simulation. Set-valued force laws such as dry friction or other strong nonlinearities can be dealt with if an appropriate numerical integrator is available. The shooting method, however, becomes infeasible if the system has many states. The proposed mixed shooting-HBM approach combines the best of both worlds.


Author(s):  
Pascal Reuss ◽  
Jens Becker ◽  
Lothar Gaul

In this paper damping induced by extensive friction occurring in the interface between bolted structures is considered by simulations and experiments. A friction damper is attached to a beam-like flexible structure by screws such that the normal force in the interface can be varied by the clamping force of the screws. Contact and friction force parameters are identified by the comparison of simulated and experimentally determined FRFs for a particular normal force. Afterward a prediction of damping for different configurations is established. For simulations a finite element model is used where suitable contact and friction models are implemented. A time simulation of the system is expensive due to the large number of DoFs of the discretized substructures and the required small step size due to the high contact stiffness. Therefore model reduction methods are used. A further reduction of the computation time can be achieved by using the Harmonic Balance Method (HBM) for a direct frequency domain computation of FRFs. This enables an efficient procedure to approximate the reachable damping as well as to search the optimal damper position and the optimal normal force. The dependency of the friction to the vibration amplitude is therefore taken into account. A more detailed investigation of the nonlinear effects, e.g. higher harmonic response, is then accomplished by transient simulations for the optimal configured system in the time domain and the results are compared to experimental results.


2019 ◽  
Vol 29 (03) ◽  
pp. 1930007 ◽  
Author(s):  
Rafal Rusinek ◽  
Joanna Rekas ◽  
Krzysztof Kecik

This paper focuses on periodic solutions for a one-degree-of-freedom oscillator with a spring made of shape memory alloy (SMA). However, when periodic solutions are unstable, irregular motion is identified numerically. The shape memory spring is described by a polynomial characteristic in this model. The harmonic balance method (HBM) is employed to find periodic solutions near the primary resonance. The solutions are confronted with results obtained by the multiple time scales method and numerical simulations. Finally, the effect of system parameters and temperature on the system dynamics is discussed.


Sign in / Sign up

Export Citation Format

Share Document