Reasons for the Observed Tropospheric Ozone Weakening Over South-Western Europe During Covid-19: From the Strict Lockdown to the New Normal

2022 ◽  
Author(s):  
Jorge Pey ◽  
José Carlos Cerro
2002 ◽  
Vol 36 (28) ◽  
pp. 4491-4501 ◽  
Author(s):  
P Tulet ◽  
K Suhre ◽  
C Mari ◽  
F Solmon ◽  
R Rosset

2016 ◽  
Vol 15 (1) ◽  
pp. 007-018 ◽  
Author(s):  
Tomasz Burghardt ◽  
Anton Pashkevich ◽  
Lidia Żakowska

Solventborne road marking paints are meaningful sources of Volatile Organic Compounds (VOCs), which under solar irradiation affect formation of tropospheric ozone, a signif cant pulmonary irritant and a key pollutant responsible for smog formation. Influence of particular VOCs on ground-level ozone formation potential, quantified in Maximum Incremental Reactivities (MIR), were used to calculate potential contribution of solvents from road marking paints used in Poland to tropospheric ozone formation. Based on 2014 data, limited only to roads administered by General Directorate for National Roads and Motorways (GDDKiA), emissions of VOCs from road marking paints in Poland were about 494 838 kg, which could lead to production of up to 1 003 187 kg of ropospheric ozone. If aromatic-free solventborne paints based on ester solvents, such as are commonly used in Western Europe, were utilised, VOC emissions would not be lowered, but potentially formed ground-level ozone could be limited by 50-70%. Much better choice from the perspective of environmental protection would be the use of waterborne road marking paints like those mandated in Scandinavia – elimination of up to 82% of the emitted VOCs and up to 95% of the potentially formed tropospheric ozone could be achieved.


2003 ◽  
Vol 3 (6) ◽  
pp. 2053-2066 ◽  
Author(s):  
J. K. Creilson ◽  
J. Fishman ◽  
A. E. Wozniak

Abstract. Using the empirically-corrected tropospheric ozone residual (TOR) technique, which utilizes coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and stratospheric ozone profiles from the Solar Backscattered Ultraviolet (SBUV) instruments, the seasonal and regional distribution of tropospheric ozone across the North Atlantic from 1979-2000 is examined. Its relationship to the North Atlantic Oscillation (NAO) is also analyzed as a possible transport mechanism across the North Atlantic. Monthly climatologies of tropospheric ozone for five different regions across the North Atlantic exhibit strong seasonality. The correlation between these monthly climatologies of the TOR and ozonesonde profiles at nearby sites in both eastern North America and western Europe are highly significant (R values of +0.98 and +0.96 respectively) and help to validate the use of satellite retrievals of tropospheric ozone. Distinct springtime interannual variability over North Atlantic Region 5 (eastern North Atlantic-western Europe) is particularly evident and exhibits similar variability to the positive phase of the NAO (R=+0.61, r=<0.01). Positive phases of the NAO are indicative of a stronger Bermuda-Azores high and a stronger Icelandic low and thus faster more zonal flow across the North Atlantic from west to east. This flow regime appears to be causing the transport of tropospheric ozone across the North Atlantic and onto Europe. The consequence of such transport is the impact on a downwind region's ability to meet their ozone attainment goals. This link between the positive phase of the NAO and increased tropospheric ozone over Region 5 could be an important tool for prediction of such pollution outbreaks.


2003 ◽  
Vol 3 (4) ◽  
pp. 4431-4460 ◽  
Author(s):  
J. K. Creilson ◽  
J. Fishman ◽  
A. E. Wozniak

Abstract. Using the empirically-corrected tropospheric ozone residual (TOR) technique, which utilizes coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and stratospheric ozone profiles from the Solar Backscattered Ultraviolet (SBUV) instruments, the seasonal and regional distribution of tropospheric ozone across the North Atlantic from 1979–2000 is examined. Its relationship to the North Atlantic Oscillation (NAO) is also analyzed as a possible transport mechanism across the North Atlantic. Monthly climatologies of tropospheric ozone for five different regions across the North Atlantic exhibit strong seasonality. The correlation between these monthly climatologies of the TOR and adjacent ozonesonde profiles in both Region 1 (eastern North America-western North Atlantic) and Region 5 (eastern North Atlantic-western Europe) are highly significant (R values of +0.98 and +0.96, respectively) and help to validate the use of satellite retrievals of tropospheric ozone. Distinct springtime interannual variability over North Atlantic Region 5 (eastern North Atlantic-western Europe) is particularly evident and exhibits similar variability to the positive phase of the NAO (R=+0.61, ρ =<0.01). Positive phases of the NAO are indicative of a stronger Bermuda-Azores high and a stronger Icelandic low and thus faster more zonal flow across the North Atlantic from west to east. This flow regime appears to be causing the transport of tropospheric ozone across the North Atlantic and onto Europe. The consequence of such transport is the impact on a downwind region's ability to meet their ozone attainment goals. This link between the positive phase of the NAO and increased tropospheric ozone over Region 5 could be an important tool for prediction of such pollution outbreaks.


Author(s):  
Raphael Georg Kiesewetter ◽  
Robert Muller

Sign in / Sign up

Export Citation Format

Share Document