scholarly journals Positive scalar curvature and an equivariant Callias-type index theorem for proper actions

2021 ◽  
Vol 6 (2) ◽  
pp. 319-356
Author(s):  
Hao Guo ◽  
Peter Hochs ◽  
Varghese Mathai
2018 ◽  
Vol 12 (04) ◽  
pp. 897-939 ◽  
Author(s):  
Simone Cecchini

A Dirac-type operator on a complete Riemannian manifold is of Callias-type if its square is a Schrödinger-type operator with a potential uniformly positive outside of a compact set. We develop the theory of Callias-type operators twisted with Hilbert [Formula: see text]-module bundles and prove an index theorem for such operators. As an application, we derive an obstruction to the existence of complete Riemannian metrics of positive scalar curvature on noncompact spin manifolds in terms of closed submanifolds of codimension one. In particular, when [Formula: see text] is a closed spin manifold, we show that if the cylinder [Formula: see text] carries a complete metric of positive scalar curvature, then the (complex) Rosenberg index on [Formula: see text] must vanish.


2019 ◽  
Vol 13 (4) ◽  
pp. 1381-1433
Author(s):  
Hao Guo ◽  
Varghese Mathai ◽  
Hang Wang

Author(s):  
Georg Frenck

AbstractWe present a rigidity theorem for the action of the mapping class group $$\pi _0({\mathrm{Diff}}(M))$$ π 0 ( Diff ( M ) ) on the space $$\mathcal {R}^+(M)$$ R + ( M ) of metrics of positive scalar curvature for high dimensional manifolds M. This result is applicable to a great number of cases, for example to simply connected 6-manifolds and high dimensional spheres. Our proof is fairly direct, using results from parametrised Morse theory, the 2-index theorem and computations on certain metrics on the sphere. We also give a non-triviality criterion and a classification of the action for simply connected 7-dimensional $${\mathrm{Spin}}$$ Spin -manifolds.


2020 ◽  
Vol 5 (3) ◽  
pp. 639-676
Author(s):  
Michael Hallam ◽  
Varghese Mathai

Author(s):  
Thomas Hasanis

AbstractWe consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.


Sign in / Sign up

Export Citation Format

Share Document