scholarly journals A lower bound for the number of conjugacy classes in a finite nilpotent group

1979 ◽  
Vol 80 (1) ◽  
pp. 253-254 ◽  
Author(s):  
Gary Sherman
2006 ◽  
Vol 73 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Norberto Gavioli ◽  
Leire Legarreta ◽  
Carmela Sica ◽  
Maria Tota

In 1996 Poland and Rhemtulla proved that the number v (G) of conjugacy classes of non-normal subgroups of a non-Hamiltonian nilpotent group G is at least c − 1, where c is the nilpotency class of G. In this paper we consider the map that associates to every conjugacy class of subgroups of a finite p-group the conjugacy class of the normaliser of any of its representatives. In spite of the fact that this map need not be injective, we prove that, for p odd, the number of conjugacy classes of normalisers in a finite p-group is at least c (taking into account the normaliser of the normal subgroups). In the case of p-groups of maximal class we can find a better lower bound that depends also on the prime p.


1970 ◽  
Vol 22 (1) ◽  
pp. 36-40 ◽  
Author(s):  
J. W. Wamsley

Mennicke (2) has given a class of three-generator, three-relation finite groups. In this paper we present a further class of three-generator, threerelation groups which we show are finite.The groups presented are defined as:with α|γ| ≠ 1, β|γ| ≠ 1, γ ≠ 0.We prove the following result.THEOREM 1. Each of the groups presented is a finite soluble group.We state the following theorem proved by Macdonald (1).THEOREM 2. G1(α, β, 1) is a finite nilpotent group.1. In this section we make some elementary remarks.


Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi ◽  
Morteza Jafarpour

Let [Formula: see text] be a finite group and [Formula: see text], where [Formula: see text] denotes the order of [Formula: see text]. The function [Formula: see text] was introduced by Tărnăuceanu. In [M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. (2020), https://doi.org/10.1007/s11856-020-2033-9 ], some lower bounds for [Formula: see text] are determined such that if [Formula: see text] is greater than each of them, then [Formula: see text] is cyclic, abelian, nilpotent, supersolvable and solvable. Also, an open problem aroused about finite groups [Formula: see text] such that [Formula: see text] is equal to the amount of each lower bound. In this paper, we give an answer to the equality condition which is a partial answer to the open problem posed by Tărnăuceanu. Also, in [M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra (2020), https://doi.org/10.1080/00927872.2020.1788571 ], it is shown that: If [Formula: see text], where [Formula: see text] is a prime number, then [Formula: see text] and [Formula: see text] is cyclic. As the next result, we show that if [Formula: see text] is not a [Formula: see text]-nilpotent group and [Formula: see text], then [Formula: see text].


2003 ◽  
Vol 141 (2-3) ◽  
pp. 565-578
Author(s):  
Engin Özkan ◽  
Hüseyin Aydın ◽  
Ramazan Dikici

2018 ◽  
Vol 17 (04) ◽  
pp. 1850065
Author(s):  
Alireza Abdollahi ◽  
Majid Arezoomand

Let [Formula: see text] be any group and [Formula: see text] be a subgroup of [Formula: see text] for some set [Formula: see text]. The [Formula: see text]-closure of [Formula: see text] on [Formula: see text], denoted by [Formula: see text], is by definition, [Formula: see text] The group [Formula: see text] is called [Formula: see text]-closed on [Formula: see text] if [Formula: see text]. We say that a group [Formula: see text] is a totally[Formula: see text]-closed group if [Formula: see text] for any set [Formula: see text] such that [Formula: see text]. Here we show that the center of any finite totally 2-closed group is cyclic and a finite nilpotent group is totally 2-closed if and only if it is cyclic or a direct product of a generalized quaternion group with a cyclic group of odd order.


2020 ◽  
Vol 102 (1) ◽  
pp. 67-76
Author(s):  
JOSHUA T. GRICE

The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a finite nilpotent group can be axiomatised by a finite set of elementary sentences.


1995 ◽  
Vol 37 (2) ◽  
pp. 243-247
Author(s):  
Orazio Puglisi

In his celebrated paper [3] Gaschiitz proved that any finite non-cyclic p-group always admits non-inner automorphisms of order a power of p. In particular this implies that, if G is a finite nilpotent group of order bigger than 2, then Out (G) = Aut(G)/Inn(G) =≠1. Here, as usual, we denote by Aut (G) the full group of automorphisms of G while Inn (G) stands for the group of inner automorphisms, that is automorphisms induced by conjugation by elements of G. After Gaschiitz proved this result, the following question was raised: “if G is an infinite nilpotent group, is it always true that Out (G)≠1?”


1992 ◽  
Vol 34 (3) ◽  
pp. 327-332 ◽  
Author(s):  
R. A. Bryce ◽  
John Cossey ◽  
E. A. Ormerod

Let G be a group. The norm, or Kern of G is the subgroup of elements of G which normalize every subgroup of the group. This idea was introduced in 1935 by Baer [1, 2], who delineated the basic properties of the norm. A related concept is the subgroup introduced by Wielandt [10] in 1958, and now named for him. The Wielandt subgroup of a group G is the subgroup of elements normalizing every subnormal subgroup of G. In the case of finite nilpotent groups these two concepts coincide, of course, since all subgroups of a finite nilpotent group are subnormal. Of late the Wielandt subgroup has been widely studied, and the name tends to be the more used, even in the finite nilpotent context when, perhaps, norm would be more natural. We denote the Wielandt subgroup of a group G by ω(G). The Wielandt series of subgroups ω1(G) is defined by: ω1(G) = ω(G) and for i ≥ 1, ωi+1(G)/ ω(G) = ω(G/ωi, (G)). The subgroups of the upper central series we denote by ζi(G).


Sign in / Sign up

Export Citation Format

Share Document