scholarly journals Harmonic functions on manifolds with nonnegative Ricci curvature and linear volume growth

2000 ◽  
Vol 192 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Christina Sormani
1998 ◽  
Vol 50 (6) ◽  
pp. 1163-1175 ◽  
Author(s):  
Jingyi Chen ◽  
Elton P. Hsu

AbstractWe introduce a distributional Ricci curvature on complete smooth manifolds with Lipschitz continuous metrics. Under an assumption on the volume growth of geodesics balls, we obtain a gradient estimate for weakly harmonic functions if the distributional Ricci curvature is bounded below.


2020 ◽  
Vol 2020 (762) ◽  
pp. 281-306 ◽  
Author(s):  
Xian-Tao Huang

AbstractSuppose {(M^{n},g)} is a Riemannian manifold with nonnegative Ricci curvature, and let {h_{d}(M)} be the dimension of the space of harmonic functions with polynomial growth of growth order at most d. Colding and Minicozzi proved that {h_{d}(M)} is finite. Later on, there are many researches which give better estimates of {h_{d}(M)}. In this paper, we study the behavior of {h_{d}(M)} when d is large. More precisely, suppose {(M^{n},g)} has maximal volume growth and has a unique tangent cone at infinity. Then when d is sufficiently large, we obtain some estimates of {h_{d}(M)} in terms of the growth order d, the dimension n and the asymptotic volume ratio {\alpha=\lim_{R\rightarrow\infty}\frac{\mathrm{Vol}(B_{p}(R))}{R^{n}}}. When {\alpha=\omega_{n}}, i.e., {(M^{n},g)} is isometric to the Euclidean space, the asymptotic behavior obtained in this paper recovers a well-known asymptotic property of {h_{d}(\mathbb{R}^{n})}.


Sign in / Sign up

Export Citation Format

Share Document