scholarly journals Green correspondence and relative projectivity for pairs of adjoint functors between triangulated categories

2020 ◽  
Vol 308 (2) ◽  
pp. 473-509
Author(s):  
Alexander Zimmermann
Author(s):  
D. Huybrechts

Reviewing the basic notions of additive and abelian categories, left and right adjoint functors, and Serre functors, this chapter is mainly devoted to triangulated categories. In particular, criteria are established which decide when a given functor is fully-faithful or an equivalence. This is formulated in terms of spanning classes. The last section discusses exceptional objects in triangulated categories which lead naturally to the notion of orthogonal decompositions of categories.


Author(s):  
Xiao-Wu Chen ◽  
Jue Le

For each recollement of triangulated categories, there is an epivalence between the middle category and the comma category associated with a triangle functor from the category on the right to the category on the left. For a morphic enhancement of a triangulated category $\mathcal {T}$ , there are three explicit ideals of the enhancing category, whose corresponding factor categories are all equivalent to the module category over $\mathcal {T}$ . Examples related to inflation categories and weighted projective lines are discussed.


2014 ◽  
Vol 57 (2) ◽  
pp. 263-284 ◽  
Author(s):  
XIAOYAN YANG

AbstractWe define model structures on a triangulated category with respect to some proper classes of triangles and give a general study of triangulated model structures. We look at the relationship between these model structures and cotorsion pairs with respect to a proper class of triangles on the triangulated category. In particular, we get Hovey's one-to-one correspondence between triangulated model structures and complete cotorsion pairs with respect to a proper class of triangles. Some applications are given.


Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


2009 ◽  
Vol 52 (2) ◽  
pp. 489-514 ◽  
Author(s):  
Markus Linckelmann

AbstractWe extend the group theoretic notions of transfer and stable elements to graded centres of triangulated categories. When applied to the centre Z*(Db(B) of the derived bounded category of a block algebra B we show that the block cohomology H*(B) is isomorphic to a quotient of a certain subalgebra of stable elements of Z*(Db(B)) by some nilpotent ideal, and that a quotient of Z*(Db(B)) by some nilpotent ideal is Noetherian over H*(B).


1971 ◽  
Vol 12 (4) ◽  
pp. 405-424 ◽  
Author(s):  
Anders Kock

The notion of commutative monad was defined by the author in [4]. The content of the present paper may briefly be stated: The category of algebras for a commutative monad can in a canonical way be made into a closed category, the two adjoint functors connecting the category of algebras with the base category are in a canonical way closed functors, and the front- and end-adjunctions are closed transformations. (The terms ‘Closed Category’ etc. are from the paper [2] by Eilenberg and Kelly). In particular, the monad itself is a ‘closed monad’; this fact was also proved in [4].


Sign in / Sign up

Export Citation Format

Share Document