cotorsion pair
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 14)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


2021 ◽  
Vol 33 (3) ◽  
pp. 601-629
Author(s):  
Silvana Bazzoni ◽  
Giovanna Le Gros

Abstract We are interested in characterising the commutative rings for which a 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} provides for covers, that is when the class 𝒜 {\mathcal{A}} is a covering class. We use Hrbek’s bijective correspondence between the 1-tilting cotorsion pairs over a commutative ring R and the faithful finitely generated Gabriel topologies on R. Moreover, we use results of Bazzoni–Positselski, in particular a generalisation of Matlis equivalence and their characterisation of covering classes for 1-tilting cotorsion pairs arising from flat injective ring epimorphisms. Explicitly, if 𝒢 {\mathcal{G}} is the Gabriel topology associated to the 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} , and R 𝒢 {R_{\mathcal{G}}} is the ring of quotients with respect to 𝒢 {\mathcal{G}} , we show that if 𝒜 {\mathcal{A}} is covering, then 𝒢 {\mathcal{G}} is a perfect localisation (in Stenström’s sense [B. Stenström, Rings of Quotients, Springer, New York, 1975]) and the localisation R 𝒢 {R_{\mathcal{G}}} has projective dimension at most one as an R-module. Moreover, we show that 𝒜 {\mathcal{A}} is covering if and only if both the localisation R 𝒢 {R_{\mathcal{G}}} and the quotient rings R / J {R/J} are perfect rings for every J ∈ 𝒢 {J\in\mathcal{G}} . Rings satisfying the latter two conditions are called 𝒢 {\mathcal{G}} -almost perfect.


2020 ◽  
Vol 144 ◽  
pp. 129-143
Author(s):  
László Fuchs ◽  
Sang Bum Lee
Keyword(s):  

Author(s):  
Xiaoyan Yang ◽  
Jingwen Shen

For the bounded derived category of an abelian category, bounds of the dimension with respect to a complete hereditary cotorsion pair are given. We also characterize levels of DG-modules and study how levels involved in a recollement of derived categories over DG-rings are related.


Author(s):  
Septimiu Crivei ◽  
Derya Keski̇n Tütüncü

We introduce and study relatively divisible and relatively flat objects in exact categories in the sense of Quillen. For every relative cotorsion pair [Formula: see text] in an exact category [Formula: see text], [Formula: see text] coincides with the class of relatively flat objects of [Formula: see text] for some relative projectively generated exact structure, while [Formula: see text] coincides with the class of relatively divisible objects of [Formula: see text] for some relative injectively cogenerated exact structure. We exhibit Galois connections between relative cotorsion pairs in exact categories, relative projectively generated exact structures and relative injectively cogenerated exact structures in additive categories. We establish closure properties and characterizations in terms of the approximation theory.


2020 ◽  
Vol 14 (4) ◽  
pp. 287-296
Author(s):  
Yunyun Zhang ◽  
Jiafeng Lü
Keyword(s):  

2019 ◽  
Vol 19 (08) ◽  
pp. 2050142
Author(s):  
Qilian Zheng ◽  
Jiaqun Wei

Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. Nakaoka and Palu introduced the notion of concentric twin cotorsion pairs in extriangulated categories. In this paper, let [Formula: see text] be a concentric twin cotorsion pair in an extriangulated category and [Formula: see text], [Formula: see text], we prove that [Formula: see text] has one-sided triangulated structure.


2019 ◽  
Vol 62 (3) ◽  
pp. 564-583 ◽  
Author(s):  
YU LIU

AbstractIn this article, we study localizations of hearts of cotorsion pairs ($\mathcal{U}, \mathcal{V}$) where $\mathcal{U}$ is rigid on an extriangulated category $\mathcal{B}$ . The hearts of such cotorsion pairs are equivalent to the functor categories over the stable category of $\mathcal{U}$ ( $\bmod \underline{\mathcal{U}}$ ). Inspired by Marsh and Palu (Nagoya Math. J.225(2017), 64–99), we consider the mutation (in the sense of Iyama and Yoshino, Invent. Math.172(1) (2008), 117–168) of $\mathcal{U}$ that induces a cotorsion pair ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ). Generally speaking, the hearts of ( $\mathcal{U}, \mathcal{V}$ ) and ( $\mathcal{U}^{\prime}, \mathcal{V}^{\prime}$ ) are not equivalent to each other, but we will give a generalized pseudo-Morita equivalence between certain localizations of their hearts.


Sign in / Sign up

Export Citation Format

Share Document