Knowledge Distillation for End-to-End Monaural Multi-Talker ASR System

Author(s):  
Wangyou Zhang ◽  
Xuankai Chang ◽  
Yanmin Qian
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3063
Author(s):  
Aleksandr Laptev ◽  
Andrei Andrusenko ◽  
Ivan Podluzhny ◽  
Anton Mitrofanov ◽  
Ivan Medennikov ◽  
...  

With the rapid development of speech assistants, adapting server-intended automatic speech recognition (ASR) solutions to a direct device has become crucial. For on-device speech recognition tasks, researchers and industry prefer end-to-end ASR systems as they can be made resource-efficient while maintaining a higher quality compared to hybrid systems. However, building end-to-end models requires a significant amount of speech data. Personalization, which is mainly handling out-of-vocabulary (OOV) words, is another challenging task associated with speech assistants. In this work, we consider building an effective end-to-end ASR system in low-resource setups with a high OOV rate, embodied in Babel Turkish and Babel Georgian tasks. We propose a method of dynamic acoustic unit augmentation based on the Byte Pair Encoding with dropout (BPE-dropout) technique. The method non-deterministically tokenizes utterances to extend the token’s contexts and to regularize their distribution for the model’s recognition of unseen words. It also reduces the need for optimal subword vocabulary size search. The technique provides a steady improvement in regular and personalized (OOV-oriented) speech recognition tasks (at least 6% relative word error rate (WER) and 25% relative F-score) at no additional computational cost. Owing to the BPE-dropout use, our monolingual Turkish Conformer has achieved a competitive result with 22.2% character error rate (CER) and 38.9% WER, which is close to the best published multilingual system.


2021 ◽  
Author(s):  
Wei Zhang ◽  
Lingxiao He ◽  
Peng Chen ◽  
Xingyu Liao ◽  
Wu Liu ◽  
...  

2020 ◽  
Author(s):  
Abhinav Garg ◽  
Gowtham P. Vadisetti ◽  
Dhananjaya Gowda ◽  
Sichen Jin ◽  
Aditya Jayasimha ◽  
...  
Keyword(s):  

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1809
Author(s):  
Long Zhang ◽  
Ziping Zhao ◽  
Chunmei Ma ◽  
Linlin Shan ◽  
Huazhi Sun ◽  
...  

Advanced automatic pronunciation error detection (APED) algorithms are usually based on state-of-the-art automatic speech recognition (ASR) techniques. With the development of deep learning technology, end-to-end ASR technology has gradually matured and achieved positive practical results, which provides us with a new opportunity to update the APED algorithm. We first constructed an end-to-end ASR system based on the hybrid connectionist temporal classification and attention (CTC/attention) architecture. An adaptive parameter was used to enhance the complementarity of the connectionist temporal classification (CTC) model and the attention-based seq2seq model, further improving the performance of the ASR system. After this, the improved ASR system was used in the APED task of Mandarin, and good results were obtained. This new APED method makes force alignment and segmentation unnecessary, and it does not require multiple complex models, such as an acoustic model or a language model. It is convenient and straightforward, and will be a suitable general solution for L1-independent computer-assisted pronunciation training (CAPT). Furthermore, we find that in regards to accuracy metrics, our proposed system based on the improved hybrid CTC/attention architecture is close to the state-of-the-art ASR system based on the deep neural network–deep neural network (DNN–DNN) architecture, and has a stronger effect on the F-measure metrics, which are especially suitable for the requirements of the APED task.


Sign in / Sign up

Export Citation Format

Share Document