scholarly journals Convergence of hydrodynamic modes: insights from kinetic theory and holography

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Michal P. Heller ◽  
Alexandre Serantes ◽  
Michal Spalinski ◽  
Viktor Svensson ◽  
Benjamin Withers

We study the mechanisms setting the radius of convergence of hydrodynamic dispersion relations in kinetic theory in the relaxation time approximation. This introduces a quali\-tatively new feature with respect to holography: a nonhydrodynamic sector represented by a branch cut in the retarded Green's function. In contrast with existing holographic examples, we find that the radius of convergence in the shear channel is set by a collision of the hydrodynamic pole with a branch point. In the sound channel it is set by a pole-pole collision on a non-principal sheet of the Green's function. More generally, we examine the consequences of the Implicit Function Theorem in hydrodynamics and give a prescription to determine a set of points that necessarily includes all complex singularities of the dispersion relation. This may be used as a practical tool to assist in determining the radius of convergence of hydrodynamic dispersion relations.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Aron Jansen ◽  
Christiana Pantelidou

Abstract We investigate the convergence of relativistic hydrodynamics in charged fluids, within the framework of holography. On the one hand, we consider the analyticity properties of the dispersion relations of the hydrodynamic modes on the complex frequency and momentum plane and on the other hand, we perform a perturbative expansion of the dispersion relations in small momenta to a very high order. We see that the locations of the branch points extracted using the first approach are in good quantitative agreement with the radius of convergence extracted perturbatively. We see that for different values of the charge, different types of pole collisions set the radius of convergence. The latter turns out to be finite in the neutral case for all hydrodynamic modes, while it goes to zero at extremality for the shear and sound modes. Furthermore, we also establish the phenomenon of pole-skipping for the Reissner-Nordström black hole, and we find that the value of the momentum for which this phenomenon occurs need not be within the radius of convergence of hydrodynamics.


1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document