THE ATOMISTIC GREEN'S FUNCTION METHOD FOR INTERFACIAL PHONON TRANSPORT

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  
Author(s):  
Lin Sun ◽  
Jayathi Y. Murthy ◽  
Zhen Huang

An atomistic Green’s function method is applied to study phonon transport across interfaces between two semi-infinite semiconductors. We investigate the dependence of phonon transmission function on interface atomic configuration, roughness layer thickness and phonon frequency. The transmission function is obtained for a number of interface configurations, including Si/Ge/Si confined structures and a single Si/Ge interface. An interface with a regularly-patterned roughness is investigated to illustrate how the rough interface influences phonon transmission. The results show that the cutoff frequency and the local density of states are modified due to the rough interface. The transmission function is found to strongly dependent on the presence of atomic-scale roughness.


2006 ◽  
Vol 129 (4) ◽  
pp. 483-491 ◽  
Author(s):  
W. Zhang ◽  
T. S. Fisher ◽  
N. Mingo

An atomistic Green’s function method is developed to simulate phonon transport across a strained germanium (or silicon) thin film between two semi-infinite silicon (or germanium) contacts. A plane-wave formulation is employed to handle the translational symmetry in directions parallel to the interfaces. The phonon transmission function and thermal conductance across the thin film are evaluated for various atomic configurations. The contributions from lattice straining and material heterogeneity are evaluated separately, and their relative magnitudes are characterized. The dependence of thermal conductance on film thickness is also calculated, verifying that the thermal conductance reaches an asymptotic value for very thick films. The thermal boundary resistance of a single Si∕Ge interface is computed and agrees well with analytical model predictions. Multiple-interface effects on thermal resistance are investigated, and the results indicate that the first few interfaces have the most significant effect on the overall thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document