scholarly journals Prevention of rock burst by protective seam mining in high-depth strata: a case study

2018 ◽  
Vol 19 ◽  
pp. 110-115
Author(s):  
Enbing Yi
Energies ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 1209 ◽  
Author(s):  
Rui Gao ◽  
Bin Yu ◽  
Hongchun Xia ◽  
Hongfei Duan

2017 ◽  
Vol 10 (8) ◽  
Author(s):  
Wei Shen ◽  
Lin-ming Dou ◽  
Hu He ◽  
Guang-an Zhu
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3295
Author(s):  
Yiming Yang ◽  
Ting Ai ◽  
Zetian Zhang ◽  
Ru Zhang ◽  
Li Ren ◽  
...  

Research on the mining-induced mechanical behavior and microcrack evolution of deep-mined coal has become increasingly important with the sharp increase in mining depth. For rock units in front of the working face, the microcrack evolution characteristics, structural characteristics, and stress state correspond well to mining layouts and depths under deep mining. The acoustic emission (AE) characteristics of typical coal under deep mining were obtained by conducting laboratory experiments to simulate mining-induced behavior and utilizing AE techniques to capture the variation in AE temporal and spatial parameters in real time, which provide an important basis for studying the rupture mechanisms and mechanical behavior of deep-mined coal. The findings were as follows: (1) AE activity under deep mining was characterized by three stages, corresponding to crack initiation, crack stable propagation, and crack unstable propagation. As the three stages proceeded, the AE counting rate and AE energy rate presented stronger clustering characteristics, and the cumulative AE counting and cumulative AE energy exhibited a sharp increase by an order of magnitude. (2) The crack initiation and the main stages of crack propagation were determined by characteristic points of variation curves in the AE parameters over time. In the main crack propagation stage, the number of cumulative AE events and the cumulative AE counts were similar among the three mining conditions, while coal samples under coal pillar mining released the largest amount of AE energy. The amount of accumulated AE energy released by coal samples increased by one order of magnitude according to the sequence of protective coal-seam mining, top-coal caving mining, and nonpillar mining. (3) Fractal technology was applied to quantitatively analyze the AE spatial evolution process, showing that the fractal dimension of the AE location decreased as the peak stress increased, corresponding to protective seam mining, caving-coal mining, and nonpillar mining. The above results showed that the deformation and fracture characteristics of coal under deep mining followed a general law, but were affected by different mining conditions. The crack initiation and main rupture activity of coal occurred earlier under the conditions of protective seam mining, top-coal caving mining, and nonpillar mining, successively. Moreover, nonpillar mining induced the strongest and highest degree of unstable rupture of the coal body in front of the working face.


2020 ◽  
Vol 30 (6) ◽  
pp. 889-899
Author(s):  
Xiang Cheng ◽  
Guangming Zhao ◽  
Yingming Li ◽  
Xiangrui Meng ◽  
Qingyi Tu

2020 ◽  
Author(s):  
Zhen Zhang ◽  
Gaofeng Liu ◽  
Ting Ren ◽  
Patrick Booth ◽  
Runsheng Lv ◽  
...  

Abstract Protective seam mining is one kind of most effective measure to reduce coal and gas outburst risk. The pressure relief angles along inclination (δm) are key parameters for evaluating the effect of protective seam mining. However, the numerical relation between δm and coal seam dip (a) is defined by discrete data and is difficult to determine δm accurately. In this study, the variations of δm with respect to seam dips are analyzed to derive analytical equations that can be used to accurately calculate δm. The relationship between δm and seam dip (a) can be expressed as parabolic or inverted parabolic curves. Mathematical equations for δm are derived by curve fitting technique. Furthermore, polynomial equations are determined as the most appropriate for δm calculation when the polynomial order is selected as 7, 6, 4 and 5 respectively. These derived equations are computationally solved and verified using actual and field test data of δm. with satisfactory consistency and accuracy. The equations are suggested as supplement and improvement for Detailed Rules on Prevention of Coal and Gas Outburst.


Author(s):  
Tiejun Kuang ◽  
Yang Tai ◽  
Bingjie Huo ◽  
Binwei Xia ◽  
Yanqun Zhang ◽  
...  

Abstract Multiple-layered coal seams widely exist in main coal mining areas of China. When these coal seams are exploited, the pillar mining method is always employed. This leads to many coal pillars left in the upper coal seams as a protective barrier. As a result, these residual pillars will not only cause the loss of coal resources but also could trigger environmental issues and a serious of mine disasters. A theoretical model was built to analyse the effect of the residual pillars. From the theoretical model, it was found that four stress concentration areas were formed by the upper residual coal pillars. To address the issues of the residual coal pillars, Datong Coal Mine Group has developed an innovative technology of the roof cutting with a chainsaw. A new protective coal seam mining method using chainsaw roof-cutting technology is introduced. A numerical model is constructed to analyse the mining pressure distribution law in working face within the lower layer coal seam. From the numerical simulation, the new protective layer mining method could reduce about 15.2% of the advancing stress, which contributes a lot to controlling the mining pressure within the lower layer. The field measurement showed that the hydraulic support utilised at the site was at lower pressure levels, which proves the new protective seam mining method can significantly reduce the working face pressure.


Sign in / Sign up

Export Citation Format

Share Document