scholarly journals Multi-objective reservoir operation of the Ukai reservoir system using improved Jaya algorithm

Author(s):  
Vijendra Kumar ◽  
S. M. Yadav

Abstract This paper introduces an effective and reliable approach based on multi population approach, namely self-adaptive multi-population Jaya algorithm (SAMP-JA), to extract multi-purpose reservoir operation policies. The current research focused on two goals: minimizing irrigation deficits and maximizing hydropower generation. Three different models were formulated. The results are compared with ordinary Jaya algorithm (JA), particle swarm optimization (PSO), and Invasive weed optimization (IWO) algorithm. In Model-1, the minimum irrigation deficit was obtained by SAMP-JA and JA as 305092.99 . SAMP-JA was better than JA, PSO and IWO in terms of convergence. In Model-2, the maximum hydropower generation was achieved by SAMP-JA, JA and PSO as 1723.50 . While comparing the average hydropower generation SAMP-JA and PSO performed better than JA and IWO. In terms of convergence, SAMP-JA was better than PSO. In Model-3, self-adaptive multi-population multi objective Jaya algorithm (SAMP-MOJA) was better than multi objective particle swarm optimization (MOPSO) and multi objective Jaya algorithm (MOJA) in terms of maximum hydropower generation, and MOPSO was better than SAMP-MOJA and MOJA in terms of minimum irrigation deficiency. While comparing convergence, SAMP-MOJA was found to be better than MOPSO and MOJA. Overall, SAMP-JA was found to be outperforming than JA, POS and IWO.

Author(s):  
Youyu Liu ◽  
Xuyou Zhang

In order to improve the quality of the non-inferior solutions obtained by multi-objective particle swarm optimization (MOPSO), an improved algorithm called external archives self-searching multi-objective particle swarm optimization (EASS-MOPSO) was proposed and applied to a multi-objective trajectory optimization problem for manipulators. The position curves of joints were constructed by using quartic B-splines; the mathematical models of time, energy and jerk optimization objectives for manipulators were established; and the kinematic constraints of joints were transformed into the constraints of the control vertexes of the B-splines. A self-searching strategy of external archives to make non-inferior solutions have the ability to search the surrounding hyperspace was explored, and a diversity maintaining strategy of the external archives was proposed. The results of several test functions by simulation show that the convergence and diversity of the proposed algorithm are better than those of other 4 selected algorithms; the results of the trajectory optimization problem for manipulators by simulation show that the convergence, diversity and time consumption of the proposed algorithm are significantly better than those of non-dominated sorting genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document