scholarly journals Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

2012 ◽  
Author(s):  
H. Fatemi

1992 ◽  
Author(s):  
A. Catalano ◽  
R.R. Arya ◽  
M. Bennett ◽  
L. Chen ◽  
R. D`Aiello ◽  
...  


1992 ◽  
Vol 258 ◽  
Author(s):  
M. Yoshimi ◽  
W. Ma ◽  
T. Horiuchi ◽  
C. C. Lim ◽  
S. C. De ◽  
...  

ABSTRACTA series of experimental investigations has been made on the a-Si // poly-Si tandem solar cell which is one of the most promised candidate of high cost-performance photovoltaic cell, e.g., high efficiency, low cost with almost no light induced degradation. Employing high conductivity with wide optical band gap p type microcrystalline SiC (μ-SiC) as a window material together with a-SiC as an interface buffer layer and also n type μc-Si as a back ohmic contact layer in the poly-Si based bottom cell, the conversion efficiency of 17.2 % has been obtained. Combining an optically transparent a-Si p-i-n cell as a top cell with an optical coupler between the top and the poly-Si bottom cell, a total efficiency of 20.3 % has been obtained so far on the four-terminal stacked mode structure. A systematic technical data for the optimization of cell structure variation on the developed tandem solar cells are presented and further possibility to improving the performance are discussed.



2014 ◽  
Vol 1 (3-4) ◽  
Author(s):  
Nikhil Jain ◽  
Mantu K. Hudait

AbstractAchieving high-efficiency solar cells and at the same time driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III–V compound semiconductor based solar cells have steadily shown performance improvement at ~1% (absolute) increase per year, with a recent record efficiency of 44.7%. Integration of such high-efficiency III–V multijunction solar cells on significantly cheaper and large area Si substrate has recently attracted immense interest to address the future LCOE roadmaps by unifying the high-efficiency merits of III–V materials with low-cost and abundance of Si. This review article will discuss the current progress in the development of III–V multijunction solar cell integration onto Si substrate. The current state-of-the-art for III–V-on-Si solar cells along with their theoretical performance projections is presented. Next, the key design criteria and the technical challenges associated with the integration of III–V multijunction solar cells on Si are reviewed. Different technological routes for integrating III–V solar cells on Si substrate through heteroepitaxial integration and via mechanical stacking approach are presented. The key merits and technical challenges for all of the till-date available technologies are summarized. Finally, the prospects, opportunities and future outlook toward further advancing the performance of III–V-on-Si multijunction solar cells are discussed. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III–V solar cell efficiencies, the future prospects for successful integration of III–V solar cell technology onto Si substrate look very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics.



Sign in / Sign up

Export Citation Format

Share Document