Supervisory Control of Loads and Energy Storage in Next-Generation Zero Energy Buildings

2016 ◽  
Author(s):  
Feitau Kung ◽  
Stephen Frank ◽  
Jennifer Scheib ◽  
Willy Bernal Heredia ◽  
Shanti Pless
2021 ◽  
Vol 236 ◽  
pp. 110751
Author(s):  
Sašo Medved ◽  
Suzana Domjan ◽  
Ciril Arkar

Solar Energy ◽  
2019 ◽  
Vol 190 ◽  
pp. 420-426 ◽  
Author(s):  
Rok Stropnik ◽  
Rok Koželj ◽  
Eva Zavrl ◽  
Uroš Stritih

2019 ◽  
Vol 111 ◽  
pp. 04008
Author(s):  
Mihaela Dudita ◽  
Meryem Farchado ◽  
Alexander Englert ◽  
Dani Carbonell Sanchez ◽  
Michel Haller

A new concept for seasonal energy storage (both heat and power) for low and zero energy buildings based on an aluminium redox cycle (Al→Al3+→Al) is proposed. The main advantage of this seasonal energy storage concept is the high volumetric energy density of aluminium (21 MWh/m3), which exceeds common storage materials like coal. To charge the storage, oxidized aluminium (Al3+) is reduced to elementary aluminium (Al) in a central processing plant using renewable electricity in summer. In winter, during discharging process, the energy stored in aluminium is released in form of hydrogen and heat via the aluminium – water reaction. Hydrogen is directly converted to electricity and heat in a fuel cell. The discharging phase has been investigated using a laboratory-scale experimental setup. In optimized conditions, heat and hydrogen is reliably produced for all types of aluminium forms (grit, pellets, foil). A high efficiency of the conversion to hydrogen was obtained (>95%). The remaining challenge is to optimize the entire cycle, e.g. the aluminium recovery process via the use of climate-neutral inert electrodes.


2018 ◽  
Vol 8 (1) ◽  
pp. 211-221
Author(s):  
Negar Aminoroayaei ◽  
Bahram Shahedi

In the current century, a suitable strategy is concerned for optimal consumption of energy, due to limited natural resources and fossil fuels for moving towards sustainable development and environmental protection. Given the rising cost of energy, environmental pollution and the end of fossil fuels, zero-energy buildings became a popular option in today's world. The purpose of this study is to investigate the factors affecting the design of zero-energy buildings, in order to reduce energy consumption and increase productivity, including plan form, climatic characteristics, materials, coverage etc. The present study collects the features of zero-energy building in Isfahan, which is based on the Emberger Climate View in the arid climate, by examining the books and related writings, field observations and using a descriptive method, in the form of qualitative studies. The results of the research showed that some actions are needed to save energy and, in general, less consumption of renewable energy by considering the climate and the use of natural conditions.


Sign in / Sign up

Export Citation Format

Share Document