optimized conditions
Recently Published Documents


TOTAL DOCUMENTS

1162
(FIVE YEARS 461)

H-INDEX

38
(FIVE YEARS 9)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Chaudhary ◽  
A. M. Akram ◽  
Qurat-ul-Ain Ahmad ◽  
Z. Hussain ◽  
S. Zahra ◽  
...  

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 618
Author(s):  
Mizaj Shabil Sha ◽  
Muni Raj Maurya ◽  
Mithra Geetha ◽  
Bijandra Kumar ◽  
Aboubakr M. Abdullah ◽  
...  

Carbon dioxide (CO2) is a greenhouse gas in the atmosphere and scientists are working on converting it to useful products, thereby reducing its quantity in the atmosphere. For converting CO2, different approaches are used, and among them, electrochemistry is found to be the most common and more efficient technique. Current methods for detecting the products of electrochemical CO2 conversion are time-consuming and complex. To combat this, a simple, cost-effective colorimetric method has been developed to detect methanol, ethanol, and formic acid, which are formed electrochemically from CO2. In the present work, the highly efficient sensitive dyes were successfully established to detect these three compounds under optimized conditions. These dyes demonstrated excellent selectivity and showed no cross-reaction with other products generated in the CO2 conversion system. In the analysis using these three compounds, this strategy shows good specificity and limit of detection (LOD, ~0.03–0.06 ppm). A cost-effective and sensitive Internet of Things (IoT) colorimetric sensor prototype was developed to implement these dyes systems for practical and real-time application. Employing the dyes as sensing elements, the prototype exhibits unique red, green, and blue (RGB) values upon exposure to test solutions with a short response time of 2 s. Detection of these compounds via this new approach has been proven effective by comparing them with nuclear magnetic resonance (NMR). This novel approach can replace heavy-duty instruments such as high-pressure liquid chromatography (HPLC), gas chromatography (G.C.), and NMR due to its extraordinary selectivity and rapidity.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sukhyeong Cho ◽  
Yun Seo Lee ◽  
Hanyu Chai ◽  
Sang Eun Lim ◽  
Jeong Geol Na ◽  
...  

Abstract Background Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. Results We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 μM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. Conclusions Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production. Graphical Abstract


2022 ◽  
Author(s):  
Wera M Schmerer

Abstract Protocols utilized for the extraction of DNA vary significantly with regards to steps involved and duration of the overall procedure due to material-specific requirements for ensuring the highest possible yield in recovery of DNA. This variation mostly affects aspects of sample preparation and digestion steps required to release the DNA from the sample material.In contexts such as the development of new PCR-based assays - which always includes a test of species-specificity - reference samples from a number of species are utilized, requiring extraction of DNA from a variety of source materials, each with their specific conditions for effective isolation of DNA.The method presented here follows the strategy of synchronizing sample material-specific aspects such as sample preparation and digestion in such a way that one common protocol can be utilized for the actual extraction and purification of the DNA, allowing for an overall more efficient extraction process, while maintaining optimized conditions for DNA recovery.


2022 ◽  
Author(s):  
Subasri Mani ◽  
Gomathi Veu ◽  
Kavitha Mary Jackson

Abstract The present study was aimed to explore the characterization of polyhydroxy butrate extracted from the bacterial strain under optimized conditions for the production of bioplastic. Under optimized fermentation conditions, Polyhydroxy butrate (PHB) was extracted and subjected to examine their properties via Thin Layer Chromotogram (TLC), Gas Chromotogram- Mass Spectrometer (GC-MS), Fourier Transform Infrared spectrum (FTIR). The presence of a brown spot in the TLC plate indicates the presence of hydroxylgroup which is similar to the polymer group. GC-MS analysis of extracted PHB shows peaks at the retention time of 3.8, 11.6 which is corresponding to octadecanoic acid, hexadecanoic acid, butyl -2-ethylester confirms the presence of polymeric nature in the extracted PHB. The absorption bands of FTIR at 1719–1720 cm −1 indicate the presence of C=O group of PHB. The absorption peaks at wave numbers 500-1000 cm -1 , 1055 cm -1 and 1230 cm -1 denotes (OH) group, (C–O) stretch and (C=O) ester group. From these results, it was confirmed that the extracted PHB is having the potential to replace petroleum plastic.


2022 ◽  
Vol 23 (2) ◽  
pp. 631
Author(s):  
Wannaporn Ittiprasert ◽  
Chawalit Chatupheeraphat ◽  
Victoria H. Mann ◽  
Wenhui Li ◽  
André Miller ◽  
...  

The efficiency of the RNA-guided AsCas12a nuclease of Acidaminococcus sp. was compared with SpCas9 from Streptococcus pyogenes, for functional genomics in Schistosoma mansoni. We deployed optimized conditions for the ratio of guide RNAs to the nuclease, donor templates, and electroporation parameters, to target a key schistosome enzyme termed omega-1. Programmed cleavages catalyzed by Cas12a and Cas9 resulted in staggered- and blunt-ended strand breaks, respectively. AsCas12a was more efficient than SpCas9 for gene knockout, as determined by TIDE analysis. CRISPResso2 analysis confirmed that most mutations were deletions. Knockout efficiency of both nucleases markedly increased in the presence of single-stranded oligodeoxynucleotide (ssODN) template. With AsCas12a, ssODNs representative of both the non-CRISPR target (NT) and target (T) strands were tested, resulting in KO efficiencies of 15.67, 28.71, and 21.43% in the SpCas9 plus ssODN, AsCas12a plus NT-ssODN, and AsCas12a plus T-ssODN groups, respectively. Trans-cleavage against the ssODNs by activated AsCas12a was not apparent in vitro. SpCas9 catalyzed more precise transgene insertion, with knock-in efficiencies of 17.07% for the KI_Cas9 group, 14.58% for KI_Cas12a-NT-ssODN, and 12.37% for KI_Cas12a-T-ssODN. Although AsCas12a induced fewer mutations per genome than SpCas9, the phenotypic impact on transcription and expression of omega-1 was similar for both nucleases.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Tehmina Anjum ◽  
Wajiha Iram ◽  
Mazhar Iqbal ◽  
Mateen Abbas ◽  
Waheed Akram ◽  
...  

The aqueous extracts of leaves and shoots of Mentha arvensis were checked for their potential to biodegrade aflatoxin B1 and B2 (AFB1; 100 µg/L and AFB2; 50 µg/L) through in vitro assays. Overall, the results showed that leaf extract degrades aflatoxins more efficiently than the shoot extract. First, the pH, temperature and incubation time were optimized for maximum degradation by observing this activity at different temperatures between 25 and 60 °C, pH between 2 and 10 and incubation time from 3 to 72 h. In general, an increase in all these parameters significantly increased the percentage of biodegradation. In vitro trials on mature maize stock were performed under optimized conditions, i.e., pH 8, temperature 30 °C and an incubation period of 72 h. The leaf extract resulted in 75% and 80% biodegradation of AFB1 and AFB2, respectively. Whereas the shoot extract degraded both toxins up to 40–48%. The structural elucidation of degraded toxin products by LCMS/MS analysis showed seven degraded products of AFB1 and three of AFB2. MS/MS spectra showed that most of the products were formed by the loss of the methoxy group from the side chain of the benzene ring, the removal of the double bond in the terminal furan ring and the modification of the lactone group, indicating less toxicity compared to the parent compounds. The degraded products showed low toxicity against brine shrimps, confirming that M. arvensis leaf extract has significant potential to biodegrade aflatoxins.


Author(s):  
Aline MAKHLOUTAH ◽  
Danylo Hatych ◽  
Thomas CHARTIER ◽  
Lou ROCARD ◽  
Antoine Goujon ◽  
...  

We report herein an unprecedented palladium-catalyzed cross-coupling reaction between mononitro-perylenediimide (PDI) and various arylstannanes. Optimized conditions developed with this Stille-type reaction allow the grafting of (hetero)aryls of various electronic nature...


Author(s):  
Xinjie Li ◽  
Peng Qi ◽  
Hongguang Du

A metal-free cross-dehydrogenation coupling method was established to synthesize N9 alkylated purine derivatives. Using PhI(OAc)2 as oxidants, versatile thioethers were successfully employed as alkylation reagents, Under optimized conditions, a variety...


2021 ◽  
Vol 47 (2) ◽  
pp. 161-171
Author(s):  
NJ Tarin ◽  
NM Ali ◽  
AS Chamon ◽  
MN Mondol ◽  
MM Rahman ◽  
...  

The growth of microalgae under optimized conditions was determined for assessing their growth rate and biomass production. In this study, the growth of both green algae (Chlamydomonas noctigama and Chlorella vulgaris) and cyanobacteria (Anabaena variabilis and Nostoc spongiaeforme) was measured as optical density. Chlamydomonas noctigama and Chlorella vulgaris showed the doubling time of 9.5 and 8.0 hours, respectively, whereas Anabaena variabilis and Nostoc spongiaeforme showed the doubling time of 14.8 and 16.6 hours, respectively. All the species exhibited the highest growth in terms of biomass at the phase in between stationary and death phases. J. Asiat. Soc. Bangladesh, Sci. 47(2): 161-171, December 2021


Sign in / Sign up

Export Citation Format

Share Document