scholarly journals MITR Low-Enriched Uranium Conversion Fluid-Structure Interaction Preliminary Design Verification

2021 ◽  
Author(s):  
Guanyi Wang ◽  
Cezary Bojanowski ◽  
Akshay Dave ◽  
David Jaluvka ◽  
Erik Wilson ◽  
...  
Author(s):  
Yiqi Yu ◽  
Elia Merzari ◽  
Jerome Solberg

In nuclear reactors that use plate-type fuel, the fuel plates are thermally managed with coolant flowing through channels between the plates. Depending on the flow rates and sizes of the fluid channels, the hydraulic forces exerted on a plate can be quite large. Currently, there is a worldwide effort to convert research reactors that use highly enriched uranium (HEU) fuel, some of which are plate-type, to low-enriched uranium (LEU). Because of the proposed changes to the fuel structure and thickness, a need exists to characterize the potential for flow-induced deflection of the LEU fuel plates. In this study, as an initial step, calculations of Fluid-Structure Interaction (FSI) for a flat aluminum plate separating two parallel rectangular channels are performed using the commercial code STAR-CCM+ and the integrated multi-physics code SHARP, developed under the Nuclear Energy Advanced Modeling and Simulation program. SHARP contains the high-fidelity single physics packages Diablo and Nek5000, both highly scalable and extensively validated. In this work, verification studies are performed to assess the results from both STAR-CCM+ and SHARP. The predicted deflections of the plate agree well with each other as well as exhibiting good agreement with simulations performed by the University of Missouri utilizing STAR-CCM+ coupled with the commercial structural mechanics code ABAQUS. The study provides a solid basis for FSI modeling capability for plate-type fuel element with SHARP.


2015 ◽  
Author(s):  
◽  
John Charles Kennedy

As part of the Global Threat Reduction Initiative (GTRI) reactor conversion program, five U.S. High Performance Research Reactors (HPRRs) are currently studying a novel Low Enriched Uranium (LEU) foil based fuel to replace their current High Enriched Uranium (HEU) dispersion fuel. The proposed fuel uses a monolithic U-10Mo foil meat clad in aluminum, whereas the current HEU fuel meat is comprised of Uranium dispersed in an aluminum matrix, before being clad in aluminum. Along with a change in the physical structure of the fuel, the fuel plate thickness has been significantly decreased. Given that these fuel plates are subject to high velocity coolant flow, these changes in the plate design have led to a need to characterize the structural response of the plates in presence of high velocity flow. The proposed method for completing this analysis is to use novel fluid-structure interaction (FSI) simulations. These simulations are carried out using commercial CFD and FEA solvers Star-CCM+ and Abaqus, and iteratively coupling their solutions together at the interface between the plate and the fluid. Given the unique nature of these simulations, it is necessary to first benchmark and qualify the codes for this analysis. To generate benchmark quality data, a flow loop and test section have been constructed for studying plate deflection and channel pressure drop under a variety of fluid flow conditions. Similar experimental analysis which considered equally sized fluid channels has been studied by a number of individuals in the past. The work presented here differs however, by intentionally offsetting the plate and creating fluid channels of different thickness. This offset effectively simulates manufacturing tolerances of a real fuel assembly. A method for generating 'As-Built' numeric models of the experiment geometry is presented. These As-Built numeric models have been shown to dramatically improve matching between experiment and numeric solutions, particularly at low- to mid-range flow rates. At higher flow rates, the experiment exhibited a dynamic 'snap' behavior that could not be replicated numerically. Additional interrogation of the boundary conditions revealed a possible explanation for this snap, however numeric methods do not yet exist for recreating this behavior. In earlier works which considered equally sized channels, plate deflection was not examined in detail and was found to be largely unpredictable and reliant upon the manufacturing tolerances of the experiment. In the numeric and experimental work presented here, plate deflection behavior at low to mid-range flow rates is qualitatively consistent with theoretical expectations.


Sign in / Sign up

Export Citation Format

Share Document