scholarly journals Sonic enhanced ash agglomeration and sulfur capture. Quarterly report, January 1996--March 1996

1996 ◽  
Author(s):  
Keyword(s):  
2011 ◽  
Vol 383-390 ◽  
pp. 3001-3004
Author(s):  
Bin Zheng ◽  
Chun Mei Lu

Effects of additive on the desulphurization characteristics of wastes were studied by the high temperature tube reactor and the KZDL-4M sulfur analyzer. The results show that after Ba(OH)2and Fe2O3is added into experimental wastes respectively, sulfur capture ability of experimental wastes increase effectively. MnCO3can only improve sulfur capture ability of experimental wastes a little or even little. Suitable additive is a useful way to improve sulfur capture ability of wastes. However, different additive affects sulfur capture ability of wastes differently, three kinds of additive can be sorted as Ba(OH)2>Fe2O3>MnCO3.


Author(s):  
L. H. Cowell ◽  
C. S. Wen ◽  
R. T. LeCren

A slagging combustor has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a coal-fueled gas turbine. Testing is completed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-staged combustor featuring a fuel rich primary zone and a fuel lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are fed in either the secondary zone or mixed with the coal water mixture and fed into the primary zone. Dry powdered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0. Hydrated lime exhibits the highest sulfur dioxide reductions in the exhaust of 90%. Pressure hydrated dolomitic lime and dolomite reduce SO2 concentrations by 82% and 55%, respectively. Coal sulfur loading is found to have a small influence on sorbent sulfur capture efficiency. Pressure hydrated dolomitic lime ground with the coal during coal water mixture preparation and injected into the primary zone is found to lower the sulfur dioxide concentration by an insignificant amount.


Author(s):  
Salisu Ibrahim ◽  
Ahmed S. AlShoaibi ◽  
Ashwani K. Gupta

Experimental results on the effect of different amounts of toluene addition to H2S gas stream are presented. Three toluene concentrations of 0.5%, 1% and 5% in H2S are presented and compared with the baseline case of 100% H2S/air combustion. Temperature data showed that addition of toluene to H2S gas stream increases the flame temperature because of large heating value associated with toluene. Addition of toluene resulted in the production of H2, which increased with increase in the amounts of toluene addition. Furthermore, increased addition of toluene concentration increased the asymptotic value of hydrogen sulfide due to oxidation competition between the formed H2 and H2S. The results also showed that the presence of CO triggers the formation of COS with toluene addition due to reaction of CO with SO2. The results revealed that SO2 mole fraction increased to a maximum value then decayed with distance along the reactor. Addition of toluene increased the rate of SO2 decay. These results have direct impact on sulfur capture in Claus reactor performance for sulfur capture.


1992 ◽  
Vol 114 (1) ◽  
pp. 152-158 ◽  
Author(s):  
L. H. Cowell ◽  
C. S. Wen ◽  
R. T. LeCren

A slagging combustor has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a coal-fueled gas turbine. Testing is completed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone and a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powdered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0. Hydrated lime exhibits the highest sulfur dioxide reductions in the exhaust of 90 percent. Pressure-hydrated dolomitic lime and dolomite reduce SO2 concentrations by 82 and 55 percent, respectively. Coal sulfur loading is found to have a small influence on sorbent sulfur capture efficiency. Pressure-hydrated dolomitic lime ground with the coal during coal-water mixture preparation and injected into the primary zone is found to lower the sulfur dioxide concentration by an insignificant amount.


Sign in / Sign up

Export Citation Format

Share Document