scholarly journals Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

1998 ◽  
Author(s):  
A.K. Herbst ◽  
D.W. Marshall ◽  
J.A. McCray
1995 ◽  
Vol 412 ◽  
Author(s):  
Krishna Vinjamuri

AbstractCurrently, at the Idaho Chemical Processing Plant (ICPP) there are about 6800 m3 of liquid sodium-bearing and liquid high-level wastes (HLW), and 3800 m3 of solid calcined HLW. One of the waste processing options under consideration includes separation of the HLW into high activity and low activity (LAW) wastes, followed by immobilization. Preliminary glasses were synthesized for the sodium-bearing, alumina-bearing, and the zirconia-bearing LAW fractions after radionuclide separations. The glasses were formed by crucible melting of a mixture of reagent chemicals representative of the LAW waste streams and frit additives at 1200 °C for 5 hours, followed by overnight annealing at 550 °C and furnace cooling of the melt. These glasses were characterized for density, elastic property, viscosity, chemical durability, structural parameters, and glass phase separation. The results are compared with that of the Hanford's standard glass ARM-i, Savannah River's benchmark glass EA, and the ICPP's grout waste form prepared using the simulated non-radioactive sodium-bearing waste fraction.


1995 ◽  
Vol 412 ◽  
Author(s):  
Darryl D. Siemer ◽  
Barry E. Scheetz ◽  
Mary Lou Gougar

AbstractProperly prepared cementitious waste forms can be hot-isostatically-pressed into materials that exhibit performance equivalent to typical radwaste-type glasses. The HIPing conditions (temperature/pressure) required to “vitrify” these concretes are quite mild and therefore consistent with both safety and good productivity. This paper describes both the process and its products with reference to potential application to Idaho Chemical Processing Plant (ICPP) reprocessing wastes.


Sign in / Sign up

Export Citation Format

Share Document