scholarly journals A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

2003 ◽  
Author(s):  
Ahmad Ghassemi
2012 ◽  
Vol 52 (1) ◽  
pp. 611
Author(s):  
Mohammad Rahman ◽  
Sheik Rahman

This paper investigates the interaction of an induced hydraulic fracture in the presence of a natural fracture and the subsequent propagation of this induced fracture. The developed, fully coupled finite element model integrates a wellbore, an induced hydraulic fracture, a natural fracture, and a reservoir that simulates interaction between the induced and natural fracture. The results of this study have shown that natural fractures can have a profound effect on induced fracture propagation. In most cases, the induced fracture crosses the natural fracture at high angles of approach and high differential stress. At low angles of approach and low differential stress, the induced fracture is more likely to be arrested and/or break out from the far-end side of the natural fracture. It has also been observed that the propagation of the induced fracture is stopped by a large natural fracture at a high angle of approach, when the injection rate remains low. At a low angle of approach, the induced fracture deviates and propagates along the natural fracture. Crossing of the natural fracture and/or arrest by the natural fracture is controlled by the shear strength of the natural fracture, natural fracture orientation, and the in situ stress state of the reservoir. In tight-gas reservoir development, the optimum well spacing and induced hydraulic fracture length are correlated. Therefore, fracturing design should be performed during the initial reservoir development planning phase along with the well spacing design to obtain an optimal depletion strategy. This model has a potential application in the design and optimisation of fracturing design in unconventional reservoirs including tight-gas reservoirs and enhanced geothermal systems.


2014 ◽  
Vol 284 ◽  
pp. 16-31 ◽  
Author(s):  
Andrea Borgia ◽  
Alberto Mazzoldi ◽  
Carlo Alberto Brunori ◽  
Carmine Allocca ◽  
Carlo Delcroix ◽  
...  

SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 575-581 ◽  
Author(s):  
Arash Dahi-Taleghani ◽  
Jon E. Olson

Summary Recent examples of hydraulic-fracture diagnostic data suggest that complex, multistranded hydraulic-fracture geometry is a common occurrence. This reality is in stark contrast to the industry-standard design models based on the assumption of symmetric, planar, biwing geometry. The interaction between pre-existing natural fractures and the advancing hydraulic fracture is a key condition leading to complex fracture patterns. Performing hydraulic-fracture-design calculations under these less-than-ideal conditions requires modeling fracture intersections and tracking fluid fronts in the network of reactivated fissures. Whether a hydraulic fracture crosses or is arrested by a pre-existing natural fracture is controlled by shear strength and potential slippage at the fracture intersections, as well as potential debonding of sealed cracks in the near-tip region of a propagating hydraulic fracture. We present a complex hydraulic-fracture pattern propagation model based on the extended finite-element method (XFEM) as a design tool that can be used to optimize treatment parameters under complex propagation conditions. Results demonstrate that fracture-pattern complexity is strongly controlled by the magnitude of anisotropy of in-situ stresses, rock toughness, and natural-fracture cement strength, as well as the orientation of the natural fractures relative to the hydraulic fracture. Analysis shows that the growing hydraulic fracture may exert enough tensile and shear stresses on cemented natural fractures that the latter may be debonded, opened, and/or sheared in advance of hydraulic-fracture-tip arrival, while under other conditions, natural fractures will be unaffected by the hydraulic fracture. Detailed aperture distributions at the intersection between fracture segments show the potential for difficulty in proppant transport under complex fracture-propagation conditions.


Author(s):  
Omar Rodríguez Villarreal ◽  
Alberto Varela Valdez ◽  
Christian La Borderie ◽  
Gilles Pijaudier-Cabot ◽  
Moisés Hinojosa Rivera

Sign in / Sign up

Export Citation Format

Share Document