complex fracture
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 181)

H-INDEX

27
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jin Tang ◽  
Ding Zhu

Abstract In multistage hydraulic fracturing treatments, the combination of extreme large-scale pumping (high rate and volume) and the high heterogeneity of the formation (because of large contact area) normally results in complex fracture growth that cannot be simply modeled with conventional fracture models. Lack of understanding of the fracturing mechanism makes it difficult to design and optimize hydraulic fracturing treatments. Many monitoring, testing and diagnosis technologies have been applied in the field to describe hydraulic fracture development. Strain rate measured by distributed acoustic sensor (DAS) is one of the tools for fracture monitoring in complex completion scenarios. DAS measures far-field strain rate that can be of assistance for fracture characterization, cross-well fracture interference identification, and well stimulation efficiency evaluation. Many field applications have shown DAS responses on observation wells or surrounding producers when a well in the vicinity is fractured. Modeling and interpreting DAS strain rate responses can help quantitatively map fracture propagation. In this work, a methodology is developed to generate the simulated strain-rate responds to assumed fracture systems. The physical domain contains a treated well that the generate strain variation in the domain because of fracturing, and an observation well that has fiber-optic sensor installed along it to measure the strain rate responses to the fracture propagation. Instead of using a complex fracture model to forward simulate fracture propagation, this work starts from a simple 2D fracture propagation model to provide hypothetical fracture geometries in a relatively reasonable and acceptable range for both single fracture case and multiple fracture case. Displacement discontinuity method (DDM) is formulated to simulate rock deformation and strain rate responds on fiber-optic sensors. At each time step, fracture propagation is first allowed, then stress, displacement and strain field are estimated as the fracture approaches to the observation well. Afterward, the strain rate is calculated as fracture growth to generate patterns as fracture approaching. Extended simulation is conducted to monitor fracture propagation and strain rate responses. The patterns of strain rate responses can be used to recognize fracture development. Examples of strain rate responses for different fracturing conditions are presented in this paper. The relationship of injection rate distribution and strain rate responses is investigated to show the potential of using DAS measurements to diagnose multistage hydraulic fracturing treatments.


2021 ◽  
pp. 1-15
Author(s):  
Youwei He ◽  
Yingjie Xu ◽  
Yong Tang ◽  
Yu Qiao ◽  
Wei Yu ◽  
...  

Abstract Complex fracture networks (CFN) provide flow channels and significantly affect well performance in unconventional reservoirs. However, traditional rate transient analysis (RTA) models barely consider the effect of CFN on production performance. The impact of multi-phase flow on rate transient behaviors is still unclear especially under CFN. Neglecting these effects could cause incorrect rate transient response and erroneous estimation of well and fracture parameters. This paper investigates multi-phase rate transient behaviors considering CFN, and tries to investigate in what situations the multi-phase models should be used to obtain more accurate results. Firstly, an embedded discrete fracture model (EDFM) is generated instead of LGR method to overcome time-intensive computation. The model is coupled with reservoir models using non-neighboring connections (NNCs). Secondly, eight cases are designed using the EDFM technology to analyze effect of natural fractures, formation permeability, and relative permeability on rate transient behaviors. Thirdly, Blasingame plot, log-log plot, and linear flow plot are used to analyze the differences of rate transient response between single-phase and multi-phase flow in reservoirs with CFN. For multi-phase flow, severe deviations can be observed on RTA plots compared with single-phase model. Combination of three RTA type curves can characterize the differences from early to late flow regimes and improve the interpretation accuracy as well as reduce the non-unicity. Finally, field data analysis in Permian Basin demonstrates that multi-phase RTA analysis are required for analyzing production and pressure data since single-phase RTA analysis will lead to big errors especially under high water cut during fracturing fluid flowback period, early production of unconventional gas wells or after waterflooding or water huff-n-puff.


2021 ◽  
pp. 1-12
Author(s):  
Jiazheng Qin ◽  
Yingjie Xu ◽  
Yong Tang ◽  
Rui Liang ◽  
Qianhu Zhong ◽  
...  

Abstract It has recently been demonstrated that complex fracture networks (CFN) especially activated natural fractures (ANF) play an important role in unconventional reservoir development. However, traditional rate transient analysis (RTA) methods barely investigate the impact of CFN or ANF. Furthermore, the influence of CFN on flow regime is still ambiguous. Failure to consider these effects could lead to misdiagnosis of flow regimes and underestimation of original oil in place (OOIP). A novel numerical RTA method is therefore presented herein to improve the quality of reserves assessment. A new methodology is introduced. Propagating hydraulic fractures (HF) can generate different stress perturbations to allow natural fractures (NF) to fail, forming various ANF pattern. An embedded discrete fracture model (EDFM) of ANF is stochastically generated instead of local grid refinement (LGR) method to overcome the time-intensive computation time. These models are coupled with reservoir models using non-neighboring connections (NNCs). Results show that except for simplified models used in previous studies subjected to traditional concept of stimulated reservoir volume (SRV), in our study, the ANF region has been discussed to emphasis the impact of NF on simulation results. Henceforth, ANF could be only concentrated around the near-wellbore region, and it may also cover the whole simulation area. Obvious distinctions could be viewed for different kinds of ANF on diagnostic plots. Instead of SRV-dominated flow mentioned in previous studies, ANF-dominated flow developed in this work is shown to be more reasonable. Also, new flow regimes such as interference flow inside and outside activated natural fracture flow region (ANFR) are found. In summary, better evaluation of reservoir properties and reserves assessment such as OOIP are achieved based on our proposed model compared with conventional models. The novel RTA method considering CFN presented herein is an easy-to-apply numerical RTA technique that can be applied for reservoir and fracture characterization as well as OOIP assessment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qingying Cheng ◽  
Haoze Li ◽  
Bingxiang Huang ◽  
Xinglong Zhao ◽  
Zheng Sun ◽  
...  

A complex fracture network is composed of many similar structures. The migration law of proppant at each structure is the core and basic content of the migration law of proppant in complex fracture network, and there is little research. In this study, the EulerianEulerian method (TEM) is used to analyze the migration and distribution characteristics of solid–liquid two phases at the fracture corner according to different corner types of the fracture network. The results show that the migration characteristics of proppant in the corner area can be divided into the corner anomaly area, buffer area, and stability area; the influence of the turning angle on proppant migration is mainly concentrated at the corner and in the range of 4 times the fracture width after turning. The probability of sand plugging at the corner of the “Y → T” fracture is lower than that of “L → l”, higher than that of the “X → +” wing branch fracture, and lower than that of the main fracture. At the corner of the fracture network, after the solid flow turns, the proppant will form a high sand area on the side of the impact fracture surface, then rebound back to the fracture, form a sand-free area on the other side, and form a high-velocity core in the refraction interval. At the corner of the “L → l” fracture, there are one high sand area, one non-sand area, two low-velocity areas, and one high-velocity area; there are three low-velocity areas, two sand-free areas, and one high sand area at the corner of the “Y → T” fracture; at the corner of the “X → +” fracture, there is a high sand area and no sand-free area, and the flow velocity of the main fracture is much greater than that of the wing branch fracture.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yong Qin ◽  
Haochuan Zhang ◽  
Chang Liu ◽  
Haifeng Ding ◽  
Tianyu Liu ◽  
...  

Abstract Field data indicates that oil production decline quickly and the oil recovery factor is low due to low permeability and insufficient energy in the tight oil reservoirs. Enhanced oil recovery (EOR) is required to improve the oil production rates of tight oil reservoirs. Gas flooding is a good means to supplement formation energy and improve oil recovery factor, especially for hydrocarbon gas flooding when CO2 is insufficient. Due to the permeability in some areas is too low, the injected gas cannot spread farther, and the EOR performance is poor. So multifractured horizontal well (MFHW) are usually used to assist gas injection in oilfields. At present, there are few studies on the optimization of hydrocarbon gas flooding parameters especially under the complex fracture network. This article uses unstructured grids to characterize the complex fracture networks, which more realistically shows the flow of formation fluids. Based on actual reservoir data, this paper establishes the numerical model of hydrocarbon gas flooding under complex fracture networks. The article conducts numerical simulation to analyze the effect of different parameters on well performance and provides the optimal injection and production parameters for hydrocarbon gas flooding in the M tight oil reservoir. The optimal injection-production well spacing of the M tight oil reservoir is about 800 to 900 m. The EOR performance is better when the total gas injection rates are about 0.45 HCPV, and gas injection rates of each well are about 3000 to 3500 m3/d (0.021 to 0.025 HCPV/a). The recommended injection-production ratio is about 1.1 to 1.2. This work can offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks. Hydrocarbon gas flooding in tight oil reservoirs can enhance oil recovery. The findings of this study can help for a better understanding of the influence of different parameters on hydrocarbon gas flooding in the M tight oil reservoir. This work can also offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Gou Feifei ◽  
Liu Chuanxi ◽  
Ren Zongxiao ◽  
Qu Zhan ◽  
Wang Sukai ◽  
...  

Unconventional resources have been successfully exploited with technological advancements in horizontal-drilling and multistage hydraulic-fracturing, especially in North America. Due to preexisting natural fractures and the presence of stress isotropy, several complex fracture networks can be generated during fracturing operations in unconventional reservoirs. Using the DVS method, a semianalytical model was created to analyze the transient pressure behavior of a complex fracture network in which hydraulic and natural fractures interconnect with inclined angles. In this model, the complex fracture network can be divided into a proper number of segments. With this approach, we are able to focus on a detailed description of the network properties, such as the complex geometry and varying conductivity of the fracture. The accuracy of the new model was demonstrated by ECLIPSE. Using this method, we defined six flow patterns: linear flow, fracture interference flow, transitional flow, biradial flow, pseudoradial flow, and boundary response flow. A sensitivity analysis was conducted to analyze each of these flow regimes. This work provides a useful tool for reservoir engineers for fracture designing as well as estimating the performance of a complex fracture network.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e057198
Author(s):  
Christopher Patrick Bretherton ◽  
Henry A Claireaux ◽  
Jonathan Gower ◽  
Shan Martin ◽  
Angela Thornhill ◽  
...  

ObjectiveTo determine research priorities for the management of complex fractures, which represent the shared priorities of patients, their families, carers and healthcare professionals.Design/settingA national (UK) research priority setting partnership.ParticipantsPeople who have experienced a complex fracture, their carers and relatives, and relevant healthcare professionals and clinical academics involved in treating patients with complex fractures. The scope includes open fractures, fractures to joints broken into multiple pieces, multiple concomitant fractures and fractures involving the pelvis and acetabulum.MethodsA multiphase priority setting exercise was conducted in partnership with the James Lind Alliance over 21 months (October 2019 to June 2021). A national survey asked respondents to submit their research uncertainties which were then combined into several indicative questions. The existing evidence was searched to ensure that the questions had not already been sufficiently answered. A second national survey asked respondents to prioritise the research questions. A final shortlist of 18 questions was taken to a stakeholder workshop, where a consensus was reached on the top 10 priorities.ResultsA total of 532 uncertainties, submitted by 158 respondents (including 33 patients/carers) were received during the initial survey. These were refined into 58 unique indicative questions, of which all 58 were judged to be true uncertainties after review of the existing evidence. 136 people (including 56 patients/carers) responded to the interim prioritisation survey and 18 questions were taken to a final consensus workshop between patients, carers and healthcare professionals. At the final workshop, a consensus was reached for the ranking of the top 10 questions.ConclusionsThe top 10 research priorities for complex fracture include questions regarding rehabilitation, complications, psychological support and return to life-roles. These shared priorities will now be used to guide funders and teams wishing to research complex fractures over the coming decade.


Sign in / Sign up

Export Citation Format

Share Document