design tool
Recently Published Documents


TOTAL DOCUMENTS

3197
(FIVE YEARS 666)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 41 (2) ◽  
pp. 1-16
Author(s):  
Benjamin Jones ◽  
Yuxuan Mei ◽  
Haisen Zhao ◽  
Taylor Gotfrid ◽  
Jennifer Mankoff ◽  
...  

We present an interactive design system for knitting that allows users to create template patterns that can be fabricated using an industrial knitting machine. Our interactive design tool is novel in that it allows direct control of key knitting design axes we have identified in our formative study and does so consistently across the variations of an input parametric template geometry. This is achieved with two key technical advances. First, we present an interactive meshing tool that lets users build a coarse quadrilateral mesh that adheres to their knit design guidelines. This solution ensures consistency across the parameter space for further customization over shape variations and avoids helices, promoting knittability. Second, we lift and formalize low-level machine knitting constraints to the level of this coarse quad mesh. This enables us to not only guarantee hand- and machine-knittability, but also provides automatic design assistance through auto-completion and suggestions. We show the capabilities through a set of fabricated examples that illustrate the effectiveness of our approach in creating a wide variety of objects and interactively exploring the space of design variations.


2022 ◽  
Vol 18 (2) ◽  
pp. 1-22
Author(s):  
João Paulo Cardoso de Lima ◽  
Marcelo Brandalero ◽  
Michael Hübner ◽  
Luigi Carro

Accelerating finite-state automata benefits several emerging application domains that are built on pattern matching. In-memory architectures, such as the Automata Processor (AP), are efficient to speed them up, at least for outperforming traditional von-Neumann architectures. In spite of the AP’s massive parallelism, current APs suffer from poor memory density, inefficient routing architectures, and limited capabilities. Although these limitations can be lessened by emerging memory technologies, its architecture is still the major source of huge communication demands and lack of scalability. To address these issues, we present STAP , a Scalable TCAM-based architecture for Automata Processing . STAP adopts a reconfigurable array of processing elements, which are based on memristive Ternary CAMs (TCAMs), to efficiently implement Non-deterministic finite automata (NFAs) through proper encoding and mapping methods. The CAD tool for STAP integrates the design flow of automata applications, a specific mapping algorithm, and place and route tools for connecting processing elements by RRAM-based programmable interconnects. Results showed 1.47× higher throughput when processing 16-bit input symbols, and improvements of 3.9× and 25× on state and routing densities over the state-of-the-art AP, while preserving 10 4 programming cycles.


2022 ◽  
pp. 1-24
Author(s):  
G. Corrado ◽  
A. Arteiro ◽  
A.T. Marques ◽  
J. Reinoso ◽  
F. Daoud ◽  
...  

Abstract This paper presents the extension and validation of omni-failure envelopes for first-ply failure (FPF) and last-ply failure (LPF) analysis of advanced composite materials under general three-dimensional (3D) stress states. Phenomenological failure criteria based on invariant structural tensors are implemented to address failure events in multidirectional laminates using the “omni strain failure envelope” concept. This concept enables the generation of safe predictions of FPF and LPF of composite laminates, providing reliable and fast laminate failure indications that can be particularly useful as a design tool for conceptual and preliminary design of composite structures. The proposed extended omni strain failure envelopes allow not only identification of the controlling plies for FPF and LPF, but also of the controlling failure modes. FPF/LPF surfaces for general 3D stress states can be obtained using only the material properties extracted from the unidirectional (UD) material, and can predict membrane FPF or LPF of any laminate independently of lay-up, while considering the effect of out-of-plane stresses. The predictions of the LPF envelopes and surfaces are compared with experimental data on multidirectional laminates from the first and second World-Wide Failure Exercise (WWFE), showing a satisfactory agreement and validating the conservative character of omni-failure envelopes also in the presence of high levels of triaxiality.


2022 ◽  
Vol 2 ◽  
Author(s):  
Elin A. Björling ◽  
Ada Kim ◽  
Katelynn Oleson ◽  
Patrícia Alves-Oliveira

Virtual reality (VR) offers potential as a collaborative tool for both technology design and human-robot interaction. We utilized a participatory, human-centered design (HCD) methodology to develop a collaborative, asymmetric VR game to explore teens’ perceptions of, and interactions with, social robots. Our paper illustrates three stages of our design process; ideation, prototyping, and usability testing with users. Through these stages we identified important design requirements for our mid-fidelity environment. We then describe findings from our pilot test of the mid-fidelity VR game with teens. Due to the unique asymmetric virtual reality design, we observed successful collaborations, and interesting collaboration styles across teens. This study highlights the potential for asymmetric VR as a collaborative design tool as well as an appropriate medium for successful teen-to-teen collaboration.


2022 ◽  
Author(s):  
Evgenia Plaka ◽  
Stephen Jones ◽  
Brett A. Bednarcyk ◽  
Evan J. Pineda ◽  
Richard Li ◽  
...  

2022 ◽  
Author(s):  
Jessica Millard ◽  
Steven Booth ◽  
Celin Rawther ◽  
Shigeo Hayashibara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document