scholarly journals Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

10.2172/90931 ◽  
1995 ◽  
Author(s):  
N Meshkati ◽  
B J Buller ◽  
M A Azadeh
Author(s):  
Jia Qianqian ◽  
Guo Chao ◽  
Li Jianghai ◽  
Qu Ronghong

The nuclear power plant with two modular high-temperature gas-cooled reactors (HTR-PM) is under construction now. The control room of HTR-PM is designed. This paper introduces the alarm displays in the control room, and describes some verification and validation (V&V) activities of the alarm system, especially verification for some new human factor issues of the alarm system in the two modular design. In HTR-PM, besides the regular V&V similar to other NPPs, the interference effect of the alarm rings of the two reactor modules at the same time, and the potential discomfort of the two reactor operators after shift between them are focused. Verifications at early stage of the two issues are carried on the verification platform of the control room before the integrated system validation (ISV), and all the human machine interfaces (HMIs) in the control room, including the alarm system are validated in ISV. The test results on the verification platform show that the alarm displays and rings can support the operators understand the alarm information without confusion of the two reactors, and the shift between the two reactor operators have no adverse impact on operation. The results in ISV also show that the alarm system can support the operators well.


2008 ◽  
Vol 238 (12) ◽  
pp. 3522-3527 ◽  
Author(s):  
Sheue-Ling Hwang ◽  
Jhih-Tsong Lin ◽  
Guo-Feng Liang ◽  
Yi-Jan Yau ◽  
Tzu-Chung Yenn ◽  
...  

2016 ◽  
Author(s):  
Katya Lee Le Blanc ◽  
Gordon Ross Bower ◽  
Rachael Ann Hill ◽  
Zachary Alexander Spielman ◽  
Brandon Charles Rice

Author(s):  
Jingxi Li ◽  
Gaofeng Huang ◽  
Lili Tong

The major threat that nuclear power plants (NPPs) pose to the safety of the public comes from the large amount radioactive material released during design-basis accidents (DBAs). Additionally, many aspects of Control Room Habitability, Environmental Reports, Facility Siting and Operation derive from the design analyses that incorporated the earlier accident source term and radiological consequence of NPPs. Depending on current applications, majority of Chinese NPPs adopt the method of TID-14844, which uses the whole body and thyroid dose criteria. However, alternative Source Term (AST) are commonly used in AP1000 and some LWRs (such as Beaver Valley Power Station, Units No. 1 and No. 2, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 And 2, Kewaunee Power Station and so on), so it is attempted to adopt AST in radiological consequence analysis of other nuclear power plants. By introducing and implementing the method of AST defined in RG 1.183 and using integral safety analysis code, a pressurized water reactor (PWR) of 900 MW nuclear power plant analysis model is constructed and the radiological consequence induced by Main Steam Line Break (MSLB) accident is evaluated. For DBA MSLB, the fractions of core inventory are assumed to be in the gap for various radionuclides and then the release from the fuel gap is assumed to occur instantaneously with the onset of assumed damage. According to the assumptions for evaluating the radiological consequences of PWR MSLB, dose calculation methodology is performed with total effective dose equivalent (TEDE) which is the criteria of dose evaluation. Compared with dose criteria of RG 1.183, the dose of control room, exclusion area boundary and outer boundary of low population zone are acceptable.


Sign in / Sign up

Export Citation Format

Share Document