scholarly journals Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

2005 ◽  
Author(s):  
Eric P. Loewen ◽  
Paul Demkowicz
Author(s):  
Carl M. Stoots ◽  
Keith G. Condie ◽  
James E. O’Brien ◽  
J. Stephen Herring ◽  
Joseph J. Hartvigsen

A 15 kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feedstock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.


Author(s):  
C. Stoots ◽  
J. O’Brien ◽  
J. Herring ◽  
J. Hartvigsen

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 × 10 cm cells (8 × 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).


Author(s):  
Carl M. Stoots ◽  
James E. O’Brien ◽  
J. Stephen Herring ◽  
Keith G. Condie ◽  
Joseph J. Hartvigsen

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 × 10 cm cells (8 × 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ∼15 kW testing capacity (H2 production rate based upon lower heating value).


2014 ◽  
Vol 138 ◽  
pp. 444-446
Author(s):  
L. Miramonti ◽  
G. Bellini ◽  
J. Benziger ◽  
D. Bick ◽  
G. Bonfini ◽  
...  

2007 ◽  
Author(s):  
Clayton F. Marler ◽  
Julie Braun ◽  
Hollie Gilbert ◽  
Dino Lowrey ◽  
Brenda Ringe Pace

Sign in / Sign up

Export Citation Format

Share Document