Role of Calcium in Platelet Activation: Novel Insights and Pharmacological Implications

2016 ◽  
Vol 12 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Periklis Davlouros ◽  
Ioanna Xanthopoulou ◽  
Nikolaos Mparampoutis ◽  
Georgios Giannopoulos ◽  
Spyridon Deftereos ◽  
...  
Keyword(s):  
1981 ◽  
Author(s):  
M Yamamoto ◽  
K Watanabe ◽  
Y Ando ◽  
H Iri ◽  
N Fujiyama ◽  
...  

It has been suggested that heparin caused potentiation of aggregation induced by ADP or epinephrine. The exact mechanism of heparin-induced platelet activation, however, remained unknown. In this paper, we have investigated the role of anti-thrombin III ( AT ) in heparin-induced platelet activation using purified AT and AT depleted plasma. When ADP or epinephrine was added to citrated PRP one minute after addition of heparin ( 1 u/ml, porcine intestinal mucosal heparin, Sigma Co. USA ), marked enhancement of platelet aggregation was observed, compared with the degree of aggregation in the absence of heparin. However, in platelet suspensions prepared in modified Tyrode’s solution, heparin exhibited no potentiating effect on platelet aggregation induced by epinephrine or ADP. Potentiation of epinephrine- or ADP-induced platelet aggregation by heparin was demonstrated when purified AT was added to platelet suspensions at a concentration of 20 μg/ml. AT depleted plasma, which was prepared by immunosorption using matrix-bound antibodies to AT, retained no AT, while determination of α1-antitrypsinα2- macroglobulin and fibrinogen in AT depleted plasma produced values which corresponded to those of the original plasma when dilution factor was taken into account. The activities of coagulation factors were also comparable to those of the original plasma. Heparin exhibited potentiating effect on ADP- or epinephrine-induced aggregation of platelets in original plasma, but no effect in AT depleted plasma. When purified AT was added back to AT depleted plasma at a concentration of 20 μg/ml, potentiation of platelet aggregation by heparin was clearly demonstrated.Our results suggest that effect of heparin on platelet aggregation is also mediated by anti-thrombin III.


HIV Medicine ◽  
2021 ◽  
Author(s):  
Cristina Nocella ◽  
Ivano Mezzaroma ◽  
Vittoria Cammisotto ◽  
Valentina Castellani ◽  
Cinzia Milito ◽  
...  

1989 ◽  
Vol 264 (6) ◽  
pp. 3274-3285 ◽  
Author(s):  
D de Chaffoy de Courcelles ◽  
P Roevens ◽  
H Van Belle ◽  
L Kennis ◽  
Y Somers ◽  
...  
Keyword(s):  

Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 633
Author(s):  
Lore De Kock ◽  
Kathleen Freson

Proto-oncogene tyrosine-protein kinase SRC (SRC), as other members of the SRC family kinases (SFK), plays an important role in regulating signal transduction by different cell surface receptors after changes in the cellular environment. Here, we reviewed the role of SRC in platelets and megakaryocytes (MK). In platelets, inactive closed SRC is coupled to the β subunit of integrin αIIbβ3 while upon fibrinogen binding during platelet activation, αIIbβ3-mediated outside-in signaling is initiated by activation of SRC. Active open SRC now further stimulates many downstream effectors via tyrosine phosphorylation of enzymes, adaptors, and especially cytoskeletal components. Functional platelet studies using SRC knockout mice or broad spectrum SFK inhibitors pointed out that SRC mediates their spreading on fibrinogen. On the other hand, an activating pathological SRC missense variant E527K in humans that causes bleeding inhibits collagen-induced platelet activation while stimulating platelet spreading. The role of SRC in megakaryopoiesis is much less studied. SRC knockout mice have a normal platelet count though studies with SFK inhibitors point out that SRC could interfere with MK polyploidization and proplatelet formation but these inhibitors are not specific. Patients with the SRC E527K variant have thrombocytopenia due to hyperactive SRC that inhibits proplatelet formation after increased spreading of MK on fibrinogen and enhanced formation of podosomes. Studies in humans have contributed significantly to our understanding of SRC signaling in platelets and MK.


2010 ◽  
Vol 8 (8) ◽  
pp. 1797-1808 ◽  
Author(s):  
J. M. E. M. COSEMANS ◽  
R. VAN KRUCHTEN ◽  
S. OLIESLAGERS ◽  
L. J. SCHURGERS ◽  
F. K. VERHEYEN ◽  
...  

2004 ◽  
Vol 113 (3) ◽  
pp. 340-345 ◽  
Author(s):  
Robert T. Dorsam ◽  
Satya P. Kunapuli

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Brian Estevez ◽  
Michael K Delaney ◽  
Aleksandra Stojanovic-Terpo ◽  
Xiaoping Du

Numerous reports indicate that the platelet glycoprotein (GP) Ib-IX complex (GPIb-IX) binds directly to the potent platelet agonist thrombin and is important for promoting thrombin-induced platelet activation. However, how GPIb-IX contributes to thrombin-induced platelet activation is unclear. It has been suggested that thrombin binding to GPIb facilitates the cleavage, and thus activation, of the protease-activated receptors (PAR). Our data indicate that GPIb-IX promotes thrombin signaling through a GPIb-IX signaling mechanism. Pretreatment of human platelets with MPalphaC, an inhibitory peptide based on a critical 14-3-3 signaling protein binding site on the cytoplasmic domain of the GPIb alpha chain, inhibited thrombin-induced platelet activation. MPalphaC-treatment inhibited thrombin-induced activation of Rac1 and LIMK1, both of which are known to play essential roles in GPIb signaling. To more specifically determine the role of GPIb-IX, we reconstituted GPIb-IX-facilitated thrombin signaling in Chinese Hamster Ovary cells expressing PAR1. Thrombin induced signaling was significantly enhanced by GPIb-expression, and deletion of the cytoplasmic 14-3-3-binding domain of GPIb alpha abolished the stimulatory effect of GPIb on thrombin signaling. Furthermore, the role of GPIb-IX in promoting thrombin signaling requires Rac1, and GPIb-IX-dependent Rac1 activation and LIMK phosphorylation are abolished in delta 605 cells expressing a 14-3-3-binding defective mutant GPIb alpha. Taken together, these data suggest that the stimulatory role of GPIb in thrombin signaling requires a C-terminal 14-3-3-binding region which mediates activation of a Rac1/LIMK1 pathway that promotes thrombin signaling leading to platelet activation.


1989 ◽  
pp. 411-425
Author(s):  
Gundu H. R. Rao ◽  
Jonathan M. Gerrard ◽  
Isaac Cohen ◽  
Carl J. Witkop ◽  
James G. White
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document