Editorial [Welcome to our Recent Patents on Biotechnology Special Edition on Skeletal Muscle Diseases!]

2012 ◽  
Vol 6 (3) ◽  
pp. 155-156 ◽  
Author(s):  
Marco Brotto
2008 ◽  
pp. 20-21
Author(s):  
Julien Ochala ◽  
Anders Oldfors ◽  
Lars Larsson

2020 ◽  
Vol 52 (12) ◽  
pp. 1908-1925
Author(s):  
Jin Seok Woo ◽  
Seung Yeon Jeong ◽  
Ji Hee Park ◽  
Jun Hee Choi ◽  
Eun Hui Lee

AbstractCalsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.


2021 ◽  
Vol 32 ◽  
pp. 102341
Author(s):  
Aditi Jain ◽  
Manisha Behera ◽  
Venkatraman Ravi ◽  
Sneha Mishra ◽  
Nagalingam R. Sundaresan ◽  
...  

2013 ◽  
Vol 203 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Sarah Oddoux ◽  
Kristien J. Zaal ◽  
Victoria Tate ◽  
Aster Kenea ◽  
Shuktika A. Nandkeolyar ◽  
...  

Skeletal muscle microtubules (MTs) form a nonclassic grid-like network, which has so far been documented in static images only. We have now observed and analyzed dynamics of GFP constructs of MT and Golgi markers in single live fibers and in the whole mouse muscle in vivo. Using confocal, intravital, and superresolution microscopy, we find that muscle MTs are dynamic, growing at the typical speed of ∼9 µm/min, and forming small bundles that build a durable network. We also show that static Golgi elements, associated with the MT-organizing center proteins γ-tubulin and pericentrin, are major sites of muscle MT nucleation, in addition to the previously identified sites (i.e., nuclear membranes). These data give us a framework for understanding how muscle MTs organize and how they contribute to the pathology of muscle diseases such as Duchenne muscular dystrophy.


2008 ◽  
Vol 86 (7) ◽  
pp. 747-759 ◽  
Author(s):  
Foteini Mourkioti ◽  
Nadia Rosenthal

Sign in / Sign up

Export Citation Format

Share Document