therapeutic potential
Recently Published Documents


TOTAL DOCUMENTS

14328
(FIVE YEARS 6658)

H-INDEX

173
(FIVE YEARS 35)

2023 ◽  
Vol 83 ◽  
Author(s):  
Z. Almalki ◽  
M. Algregri ◽  
M. Alhosin ◽  
M. Alkhaled ◽  
S. Damiati ◽  
...  

Abstract Oral squamous cell carcinoma (OSCC) is a malignant tumour of Head and Neck Cancer (HNC). The recent therapeutic approaches used to treat cancer have adverse side effects. The natural agents exhibiting anticancer activities are generally considered to have a robust therapeutic potential. Curcuminoids, one of the major active compounds of the turmeric herb, are used as a therapeutic agent for several diseases including cancer. In this study, the cytotoxicity of curcuminoids was investigated against OSCC cell line HNO97. Our data showed that curcuminoids significantly inhibits the proliferation of HNO97 in a time and dose-dependent manner (IC50=35 μM). Cell cycle analysis demonstrated that curcuminoids increased the percentage of G2/M phase cell populations in the treated groups. Treating HNO97 cells with curcuminoids led to cell shrinking and increased detached cells, which are the typical appearance of apoptotic cells. Moreover, flow cytometry analysis revealed that curcuminoids significantly induced apoptosis in a time-dependent manner. Furthermore, as a response to curcuminoids treatment, comet tails were formed in cell nuclei due to the induction of DNA damage. Curcuminoids treatment reduced the colony formation capacity of HNO97 cells and induced morphological changes. Overall, these findings demonstrate that curcuminoids can in vitro inhibit HNC proliferation and metastasis and induce apoptosis.


2022 ◽  
Vol 146 ◽  
pp. 112512
Author(s):  
Ali Zarezadeh Mehrabadi ◽  
Reza Ranjbar ◽  
Mahdieh Farzanehpour ◽  
Alireza Shahriary ◽  
Ruhollah Dorostkar ◽  
...  

Life Sciences ◽  
2022 ◽  
Vol 291 ◽  
pp. 120316
Author(s):  
Shreyasi Gupta ◽  
Sanchari Mukhopadhyay ◽  
Arkadeep Mitra

2022 ◽  
Vol 146 ◽  
pp. 112442
Author(s):  
Hasan Slika ◽  
Hadi Mansour ◽  
Nadine Wehbe ◽  
Suzanne A. Nasser ◽  
Rabah Iratni ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Stefanie Dietz ◽  
Julian Schwarz ◽  
Ana Velic ◽  
Irene González-Menéndez ◽  
Leticia Quintanilla-Martinez ◽  
...  

During pregnancy, maternal immune system has to balance tightly between protection against pathogens and tolerance towards a semi-allogeneic organism. Dysfunction of this immune adaptation can lead to severe complications such as pregnancy loss, preeclampsia or fetal growth restriction. In the present study we analyzed the impact of the murine MHC class Ib molecule Qa-2 on pregnancy outcome in vivo. We demonstrate that lack of Qa-2 led to intrauterine growth restriction and increased abortion rates especially in late pregnancy accompanied by a disturbed trophoblast invasion and altered spiral artery remodeling as well as protein aggregation in trophoblast cells indicating a preeclampsia-like phenotype. Furthermore, lack of Qa-2 caused imbalanced immunological adaptation to pregnancy with altered immune cell and especially T-cell homeostasis, reduced Treg numbers and decreased accumulation and functional activation of myeloid-derived suppressor cells. Lastly, we show that application of sHLA-G reduced abortion rates in Qa-2 deficient mice by inducing MDSC. Our results highlight the importance of an interaction between HLA-G and MDSC for pregnancy success and the therapeutic potential of HLA-G for treatment of immunological pregnancy complications.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Huiyuan Zhu ◽  
Dexi Bi ◽  
Youhua Zhang ◽  
Cheng Kong ◽  
Jiahao Du ◽  
...  

AbstractThe ketogenic diet (KD) is a high-fat, adequate-protein, and very-low-carbohydrate diet regimen that mimics the metabolism of the fasting state to induce the production of ketone bodies. The KD has long been established as a remarkably successful dietary approach for the treatment of intractable epilepsy and has increasingly garnered research attention rapidly in the past decade, subject to emerging evidence of the promising therapeutic potential of the KD for various diseases, besides epilepsy, from obesity to malignancies. In this review, we summarize the experimental and/or clinical evidence of the efficacy and safety of the KD in different diseases, and discuss the possible mechanisms of action based on recent advances in understanding the influence of the KD at the cellular and molecular levels. We emphasize that the KD may function through multiple mechanisms, which remain to be further elucidated. The challenges and future directions for the clinical implementation of the KD in the treatment of a spectrum of diseases have been discussed. We suggest that, with encouraging evidence of therapeutic effects and increasing insights into the mechanisms of action, randomized controlled trials should be conducted to elucidate a foundation for the clinical use of the KD.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 436
Author(s):  
Luuk J. Schipper ◽  
Kim Monkhorst ◽  
Kris G. Samsom ◽  
Linda J.W. Bosch ◽  
Petur Snaebjornsson ◽  
...  

With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Haoyu Wu ◽  
Zhi Peng ◽  
Ying Xu ◽  
Zixuan Sheng ◽  
Yanshan Liu ◽  
...  

Abstract Background Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. Methods Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. Results modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. Conclusions These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


Sign in / Sign up

Export Citation Format

Share Document