Identification of Polynomial Cutting Coefficients for a Dual-Mechanism Ball-end Milling Force Model

2019 ◽  
Vol 13 (3) ◽  
pp. 232-240
Author(s):  
Zhixin Feng ◽  
Meng Liu ◽  
Guohe Li

Background: Calibration of cutting coefficients is the key content in modeling a mechanistic cutting force model. Generally, in modeling cutting force for ball end milling, the tangent, radial and binormal cutting force coefficients are each considered as a polynomial, respectively. This fact is due to the dependency between the cutting force coefficients and the cutting edge inclination angle which is variable in ball-end mills. Objective: This paper presents an approach to determine the polynomial cutting force coefficients. Methods: In this approach, the cutting force coefficients are expressed as explicit linear equations about the average slotting forces. After analysis of the least square regression method which is utilized in the cutting coefficients evaluation, the principle of cutting parameters choice in calibration experiment and the relationship between the order of polynomial and the number of experiments are presented. Besides, a lot of patents on identification of polynomial cutting coefficients for milling force model were studied. Results: Finally, a series of semi-slotting verification cutting tests were arranged, the measured force agrees well with the predicted force, which demonstrates the effectiveness of this approach. Conclusion: Based on the calibration method proposed in this paper, the cutting coefficients can be determined through (m+2) slotting experiments for m-degree shearing coefficients polynomial theoretically.

2005 ◽  
Vol 127 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Hoon Ko ◽  
Dong-Woo Cho

Application of a ball-end milling process model to a CAD/CAM or CAPP system requires a generalized methodology to determine the cutting force coefficients for different cutting conditions. In this paper, we propose a mechanistic cutting force model for 3D ball-end milling using instantaneous cutting force coefficients that are independent of the cutting conditions. The uncut chip thickness model for three-dimensional machining considers cutter deflection and runout. An in-depth analysis of the characteristics of these cutting force coefficients, which can be determined from only a few test cuts, is provided. For more accurate cutting force predictions, the size effect is also modeled using the cutter edge length of the ball-end mill and is incorporated into the cutting force model. This method of estimating the 3D ball-end milling force coefficients has been tested experimentally for various cutting conditions.


2021 ◽  
Author(s):  
Ce Zhang ◽  
Changyou LI ◽  
Mengtao Xu ◽  
Guo Yao ◽  
Zhendong Liu ◽  
...  

Abstract Ball-end milling cutters are one of the most widely used cutters in the automotive, aerospace, die and machine parts industries. In addition, milling chatter will reduce the surface quality and production efficiency, resulting in noise. It is particularly important to model the cutting force and analyze the flutter stability of ball-end milling cutters. In this paper, a simplified milling force model of ball-end milling cutter with three degrees of freedom was established based on Merchant bevel cutting theory. The model simplified the milling force coefficient. The expressions of instantaneous milling area considering the vibration displacements in X, Y and Z directions were derived. The nonlinear dynamic cutting force model of ball-end milling cutter with three degrees of freedom was established. The nonlinear chatter vibration mechanical model of ball-end milling cutter with three degrees of freedom was established by introducing the time delay term, the stability analysis is carried out by time domain simulation. The proposed models were experimentally verified.


Author(s):  
Han Ul Lee ◽  
Dong-Woo Cho ◽  
Kornel F. Ehmann

Complex three-dimensional miniature components are needed in a wide range of industrial applications from aerospace to biomedicine. Such products can be effectively produced by micro-end-milling processes that are capable of accurately producing high aspect ratio features and parts. This paper presents a mechanistic cutting force model for the precise prediction of the cutting forces in micro-end-milling under various cutting conditions. In order to account for the actual physical phenomena at the edge of the tool, the components of the cutting force vector are determined based on the newly introduced concept of the partial effective rake angle. The proposed model also uses instantaneous cutting force coefficients that are independent of the end-milling cutting conditions. These cutting force coefficients, determined from measured cutting forces, reflect the influence of the majority of cutting mechanisms involved in micro-end-milling including the minimum chip-thickness effect. The comparison of the predicted and measured cutting forces has shown that the proposed method provides very accurate results.


2014 ◽  
Vol 800-801 ◽  
pp. 337-341 ◽  
Author(s):  
Yun Peng Ding ◽  
Xian Li Liu ◽  
Hui Nan Shi ◽  
Jiao Li ◽  
Rui Zhang

In this paper, a cutting force model in ball end milling of mold cavity corner is established. Based on infinitesimal milling force model, cutting element of ball end milling cutter is treated as equal diameter end milling cutter, then determine the location of points when the micro-element participated in the cutting, and the tool-workpiece contact area and cutting range is determined. Thereby a complete milling force model in corner machining with ball end milling cutter is established.


Author(s):  
Yong Zhao ◽  
Robert B. Jerard ◽  
Barry K. Fussell

This paper introduces a method to use the cutting force profile, measured from a Kistler dynamometer, to calibrate a mechanistic based force model containing four cutting coefficients. The undesirable effects of tool vibration and force sensor dynamics are minimized by carefully choosing experimental conditions. Cutting force profiles provide an array of force versus chip thickness based values that can be used in a regression fit to find the model coefficients. Results show that different ranges of chip thickness used in the calibration process result in slightly different cutting coefficients, which implies chip thickness has an effect on cutting coefficients. The force profile based cutting coefficients are then used in the cutting force model to estimate the peak resultant cutting force. Comparison of model estimates and measured values show less than 10% error.


Sign in / Sign up

Export Citation Format

Share Document