milling force model
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1495
Author(s):  
Tongshun Liu ◽  
Kedong Zhang ◽  
Gang Wang ◽  
Chengdong Wang

The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling. Determining the MUCT value is fundamental in order to predict the micro-milling force. In this study, based on the assumption that the normal shear force and the normal ploughing force are equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT as the break point are constructed to represent the distribution of the shear/ploughing force under the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function, the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting force coefficient function embedded with the novel MUCT is absolutely integrable, making the micro-milling force model more stable and accurate than the conventional models. Moreover, by considering different factors in the MUCT model, the proposed micro-milling force model is more flexible than the traditional models. Micro-milling experiments under different cutting conditions have verified the efficiency and improvement of the proposed micro-milling force model.


2021 ◽  
Author(s):  
Lan Jin ◽  
Xinlei Zeng ◽  
Shiqi Lu ◽  
Liming Xie ◽  
Xuefeng Zhang

Abstract In this paper, surface accuracy of the work-piece was improved by mining large amounts of machining data and obtaining potentially valuable information. By using data mining technology, a dynamic milling force prediction model has been established to keep with its working. The model was developed by a combination of Regression Analysis and RBF Neural Network. The internal relation of the data were analyzed in this study, such as milling force, cutting parameters, temperature, vibration and surface quality et.al, and the methods of Cluster Analysis and Correlation Analysis was used to extract and induct dynamic milling force variations on the effects with different situations. The results suggest that the proposed dynamic milling force model had a better prediction effect, which ensure production quality, reduce the occurrence of chatter and provide a more accurate basis for selecting process parameters.


2021 ◽  
Author(s):  
Jianlong Zhang ◽  
Wei Zhao ◽  
Bo Li ◽  
Wei Tian ◽  
Kan Zheng ◽  
...  

Abstract With their successful applications in handling, spraying, arc welding and other processing fields, industrial robots are gradually replacing traditional CNC machine tools to complete machining tasks due to the wider working envelope and the higher flexibility. Aiming at the chatter problem, a robotic longitudinal-torsional ultrasonic milling method with variable force coefficient is proposed in this paper. Taking Carbon Fiber Reinforced Plastics (CFRP) as the processing object, the influence of the fiber layup angle on the milling force are analyzed first; then the robot milling force parameters are determined and the robot milling kinematics model is established. Furthermore, the ultrasonic function angle is defined, and the cutting layer thickness model, the dynamic milling force model and the dynamic differential equation under ultrasonic vibration are established to analyze the stability of robotic longitudinal-torsional ultrasonic milling of CFRP. Finally, the full discrete method is used to obtain stability lobe diagrams.


2021 ◽  
Author(s):  
Ce Zhang ◽  
Changyou LI ◽  
Mengtao Xu ◽  
Guo Yao ◽  
Zhendong Liu ◽  
...  

Abstract Ball-end milling cutters are one of the most widely used cutters in the automotive, aerospace, die and machine parts industries. In addition, milling chatter will reduce the surface quality and production efficiency, resulting in noise. It is particularly important to model the cutting force and analyze the flutter stability of ball-end milling cutters. In this paper, a simplified milling force model of ball-end milling cutter with three degrees of freedom was established based on Merchant bevel cutting theory. The model simplified the milling force coefficient. The expressions of instantaneous milling area considering the vibration displacements in X, Y and Z directions were derived. The nonlinear dynamic cutting force model of ball-end milling cutter with three degrees of freedom was established. The nonlinear chatter vibration mechanical model of ball-end milling cutter with three degrees of freedom was established by introducing the time delay term, the stability analysis is carried out by time domain simulation. The proposed models were experimentally verified.


Author(s):  
Diego Russo ◽  
Gorka Urbicain ◽  
Antonio J. Sánchez Egea ◽  
Alejandro Simoncelli ◽  
Daniel Martinez Krahmer

Author(s):  
Da Qu ◽  
Bo Wang ◽  
Yuan Gao ◽  
Huajun Cao

Abstract Micro-milling is widely used in various crucial fields with the ability of machining micro- and meso-scaled functional structures on various materials efficiently. However, the micro-milling force model is not comprehensively developed yet when tool feature sizes continually decrease to under two hundred microns in a low-stiffness system. This paper proposes an analytical force model considering the influence of tool radius, size effect, tool runout, tool deflection, and the actual trochoidal trajectories and the interaction of historical tool teeth trajectories (IHTTT). Different micro-milling status are recognized by analyzing the cutting process of different tool teeth. Conditions of single-tooth cutting status are determined by a proposed numerical algorithm, and entry angle and exit angle are analyzed under various cutting conditions for the low-stiffness system. Three micro-milling status, including single-tooth cutting status, are distinguished based on the instantaneous undeformed chip thickness resulting in three types of material removal mechanisms in predicting micro-milling force components. Discontinuous change rates of undeformed chip thickness are found in the low-stiffness micro-milling system. The proposed micro-milling force model is then verified through experiments of micro slot milling Elgiloy alloy with a 150-µm-diametrical two-teeth micro-end-mill. The experimental results show a Root-Mean-Square Error (RSME) of 0.092 N in the predicted resultant force, accounting for approximately 5.12% of the measured force, by which the proposed theoretical model is verified to be of good prediction accuracy.


2021 ◽  
Vol 1865 (3) ◽  
pp. 032019
Author(s):  
Jianmin Xu ◽  
Kun Liu ◽  
Qingjie Zheng ◽  
Xiaoyan Gong

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhenjing Duan ◽  
Changhe Li ◽  
Wenfeng Ding ◽  
Yanbin Zhang ◽  
Min Yang ◽  
...  

AbstractAluminum alloy is the main structural material of aircraft, launch vehicle, spaceship, and space station and is processed by milling. However, tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy. The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters, material mechanical properties, machine tools, and other parameters. In particular, milling force is the crucial factor to determine material removal and workpiece surface integrity. However, establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system. The research progress of cutting force model is reviewed from three modeling methods: empirical model, finite element simulation, and instantaneous milling force model. The problems of cutting force modeling are also determined. In view of these problems, the future work direction is proposed in the following four aspects: (1) high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth, which easily produces high residual stress. The residual stress should be analyzed under this particular condition. (2) Multiple factors (e.g., eccentric swing milling parameters, lubrication conditions, tools, tool and workpiece deformation, and size effect) should be considered comprehensively when modeling instantaneous milling forces, especially for micro milling and complex surface machining. (3) The database of milling force model, including the corresponding workpiece materials, working condition, cutting tools (geometric figures and coatings), and other parameters, should be established. (4) The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling. (5) The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication (mql) and nanofluid mql should be predicted.


Sign in / Sign up

Export Citation Format

Share Document