Implementation of a Data Acquisition System for 2×2 Fiber Optic Taper Array Coupled Digital X-ray Detector

2014 ◽  
Vol 8 (1) ◽  
pp. 152-158
Author(s):  
Zhigang Zhao ◽  
Ru Wang ◽  
Jianheng Huang ◽  
Jinchuan Guo ◽  
Hanben Niu

Fiber optic taper (FOP) array coupled digital x-ray detector can be an ideal choice for large area high resolution x-ray imaging, but its data acquisition system is a challenge, for the reasons such as restrictions of hardware design due to the shape of the FOP array, long distance control requirement in x-ray environment, and arrangement of data transmission sequence among multiple CCD/CMOS image sensors. A FPGA and ARM based data acquisition system for 2×2 FOP array coupled x-ray detector was implemented in this paper. We have finished all the procedures involving the data acquisition system, including hardware and PCB design, FPGA design, ARM and PC software development, and so on. The data acquisition process operates in parallel during parameters setting, 4 CMOS image sensors (LUPA-4000) timing driving, and DDR2 SDRAM data buffering, while it works in series when sending data from each FPGA to ARM and from ARM to PC. Experimental results showed that the data acquisition system worked steadily, and whole images of a custom-built calibration plate were achieved by butting images of the four individual CMOS image sensors’ in visible light test environment. This work could be a valuable foundation for realization of all kinds of FOP array coupled digital x-ray detectors.

2019 ◽  
Vol 16 (17) ◽  
pp. 20190373-20190373
Author(s):  
Shixing Liu ◽  
Yajie Song ◽  
Guangzhu Liu ◽  
Hao Ren ◽  
Hongrui Cao ◽  
...  

1986 ◽  
Vol 57 (5) ◽  
pp. 973-977
Author(s):  
Martin M. Starke ◽  
Daniel W. Corcoran ◽  
John C. Bilello

2019 ◽  
Vol 8 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Wenhao Li ◽  
Qisheng Zhang ◽  
Qimao Zhang ◽  
Feng Guo ◽  
Shuaiqing Qiao ◽  
...  

Abstract. The ambiguity of geophysical inversions, which is based on a single geophysical method, is a long-standing problem in geophysical exploration. Therefore, multi-method geophysical prospecting has become a popular topic. In multi-method geophysical prospecting, the joint inversion of seismic and electric data has been extensively researched for decades. However, the methods used for hybrid seismic–electric data acquisition that form the base for multi-method geophysical prospecting techniques have not yet been explored in detail. In this work, we developed a distributed, high-precision, hybrid seismic–electrical data acquisition system using advanced Narrowband Internet of Things (NB-IoT) technology. The system was equipped with a hybrid data acquisition board, a high-performance embedded motherboard based on field-programmable gate array, an advanced RISC machine, and host software. The data acquisition board used an ADS1278 24 bit analog-to-digital converter and FPGA-based digital filtering techniques to perform high-precision data acquisition. The equivalent input noise of the data acquisition board was only 0.5 µV with a sampling rate of 1000 samples per second and front-end gain of 40 dB. The multiple data acquisition stations of our system were synchronized using oven-controlled crystal oscillators and global positioning system technologies. Consequently, the clock frequency error of the system was less than 10−9 Hz at 1 Hz after calibration, and the synchronization accuracy of the data acquisition stations was ±200 ns. The use of sophisticated NB-IoT technologies allowed the long-distance wireless communication between the control center and the data acquisition stations. In validation experiments, it was found that our system was operationally stable and reliable, produced highly accurate data, and it was functionally flexible and convenient. Furthermore, using this system, it is also possible to monitor the real-time quality of data acquisition processes. We believe that the results obtained in this study will drive the advancement of prospective integrated seismic–electrical technologies and promote the use of IoT technologies in geophysical instrumentation.


Sign in / Sign up

Export Citation Format

Share Document